NORTH WEST Cambridge Foul Water Drainage Strategy

Condition 30 May 2013

URS

North West Cambridge – Foul Water Drainage Strategy

NWC1-URS-SW-SWD-XX-RPT-CE-0004

P04 For Information

Prepared for: University of Cambridge

UNITED KINGDOM & IRELAND

University of Cambridge — North West Cambridge NWC1-URS-SW-SWD-XX-RPT-CE-0004

ISSUE	SCHEDULE				
Issue	Date	Details	Prepared by	Reviewed by	Approved by
P01	24/10/12	1 st draft – for UniC team comment	Andrew Alty Senior Engineer	Suzanne Scobie Principal Engineer	David Smith Technical Director
P02	27/11/12	2 nd draft – for UniC team comment	lan Philpott Engineer	Suzanne Scobie Principal Engineer	David Smith Technical Director
P03	15/04/13	Anglian Water email added to App G– Issued for final discharge of condition	lan Philpott Engineer	Suzanne Scobie Principal Engineer	David Smith Technical Director
P04	29/04/13	Final issue	lan Philpott Engineer	Suzanne Scobie Principal Engineer	David Smith Technical Director

URS Scott House Alençon Link Basingstoke Hampshire RG21 7PP

Limitations

URS Infrastructure & Environment UK Limited ("URS") has prepared this Report for the sole use of **University of Cambridge** ("Client") in accordance with the Agreement under which our services were performed. No other warranty, expressed or implied, is made as to the professional advice included in this Report or any other services provided by URS. This Report is confidential and may not be disclosed by the Client nor relied upon by any other party without the prior and express written agreement of URS.

The conclusions and recommendations contained in this Report are based upon information provided by others and upon the assumption that all relevant information has been provided by those parties from whom it has been requested and that such information is accurate. Information obtained by URS has not been independently verified by URS, unless otherwise stated in the Report.

The methodology adopted and the sources of information used by URS in providing its services are outlined in this Report. The work described in this Report was undertaken between **September 2012** and **April 2013** and is based on the conditions encountered and the information available during the said period of time. The scope of this Report and the services are accordingly factually limited by these circumstances.

Where assessments of works or costs identified in this Report are made, such assessments are based upon the information available at the time and where appropriate are subject to further investigations or information which may become available.

URS disclaim any undertaking or obligation to advise any person of any change in any matter affecting the Report, which may come or be brought to URS' attention after the date of the Report.

Certain statements made in the Report that are not historical facts may constitute estimates, projections or other forward-looking statements and even though they are based on reasonable assumptions as of the date of the Report, such forward-looking statements by their nature involve risks and uncertainties that could cause actual results to differ materially from the results predicted. URS specifically does not guarantee or warrant any estimate or projections contained in this Report.

Copyright

© This Report is the copyright of URS Infrastructure & Environment UK Limited. Any unauthorised reproduction or usage by any person other than the addressee is strictly prohibited.

TABLE OF CONTENTS

1.	INTRODUCTION 4
1.1	Planning Condition 4
1.2	Planning Policy 4
2.	CONSTRAINTS AND OPPORTUNITIES 5
2.1	Existing Foul Water Sewers5
2.2	Existing topography5
2.3	Phasing
3.	DESIGN CRITERIA
3.1	Design standards7
3.2	Flow rates by tenure7
3.3	Surface water recycling9
3.4	Sewer Layout and Easements9
3.5	Minimum pipe diameters and gradients
3.6	Pumping Station Geometry9
3.7	Adoption and maintenance9
4.	DESIGN OPTIONS 10
4.1	Full gravity network 10
4.2	Gravity network incorporating pumping stations 10
5.	FOUL DRAINAGE CATCHMENTS AND PREDICTED FLOW RATES 11
5.1	Catchments 11
5.2	Pumping Stations11
5.3	Foul Distribution11
5.4	Total Flows, Attenuation and Discharge 12
5.5	Modelling Approach12
6.	MODELLING RESULTS 13
7.	CONSULTATIONS 15
8.	CONCLUSIONS 16
APPENDI	X A – Planning Policy
APPENDI	X B – Anglian Water sewer records
APPENDI	X C – Foul peak flow table and foul sewer distribution table
APPENDI	X D – Hydraulic calculations
APPENDI	X E – OPA foul drainage strategy
APPENDI	X F – Design drawings showing proposed foul sewers and pump stations
APPENDI	X G - Correspondence

1. INTRODUCTION

This document presents the Foul Water Drainage Strategy which has been prepared in response to Condition 30 for the planning consent for the North West Cambridge development (reference 11/1114/OUT and S/1886/11). This document develops the information presented in the Utilities Chapter of the Environmental Statement which was prepared in support of the Outline Planning Application (OPA) for the development.

1.1 Planning Condition

The following Planning Conditions & Informatives have been considered in the preparation of this Foul Water Drainage Strategy.

Flood Risk and Sustainable Drainage Systems

Condition 30

Prior to the commencement of any development a detailed Foul Water Drainage Strategy, based on that within the FRA and Drainage Strategy, dated March 2012, shall be submitted and agreed in writing with the Local Authority. The strategy should include the phasing of such works. The strategy shall include details of any necessary improvement of the existing sewerage system to ensure that sufficient capacity exists to cater for the needs of the development. The works/scheme shall be constructed and completed in accordance with the approved plans/specification and such time(s) as may be specified in the approved scheme.

REASON To prevent environmental and amenity problems arising from flooding and ensure that sufficient capacity exists within the sewerage network to meet the needs of the development. North West Cambridge Area Action Plan Policies NW25, NW26 and NW27.

Informatives

There are no specific Informatives related to this Condition.

1.2 Planning Policy

Planning Policy requirements can be found in **Appendix A**.

2. CONSTRAINTS AND OPPORTUNITIES

2.1 Existing Foul Water Sewers

Anglian Water is the statutory sewerage authority and is therefore responsible for the treatment and disposal of foul water from Cambridge. The development is situated within the catchment of Cambridge Sewage Treatment Works.

Sewer record plans indicate that there are existing foul sewers below Huntingdon Road and Madingley Road, to the north and south of the site, respectively, as defined below (and shown on drawings in **Appendix B**):-

- Huntingdon Road Sewers Two separate networks have been identified that fall in an
 easterly and westerly direction from the high point, which are situated adjacent to the
 Reston property on the west side of the Girton Road/Huntingdon Road junction. This
 existing sewer is formed using vitrified clay pipes with a diameter of between 9" and
 300mm.
- Madingley Road Sewers A 1200mm diameter trunk sewer is situated to the south east of the site, which accommodates the discharge from the 300mm diameter sewers situated below Madingley Road and Huntingdon Road.

Anglian Water has been consulted to determine the available capacity within the existing sewer network. Anglian Water has supplied a Predevelopment Enquiry Report which indicates that the Cambridge Sewage Treatment Works has sufficient capacity to serve the development. This is consistent with the Phase 1 Water Cycle Study for Major Growth Areas in and around Cambridge prepared by Halcrow, which states that there is capacity to accommodate the increased flow from this and other strategic growth sites

Anglian Water has also indicated that whilst there is no existing foul drainage network within, or directly adjacent to, the site with capacity to accept the proposed discharge from the development, there is a 1200mm diameter trunk foul sewer downstream of the junction of Madingley Road and Wilberforce Road, to the south east of the site, that will currently be capable of accommodating a discharge of up to 42.4 litres per second.

This connection location is consistent with the recommendations contained within the Phase 1 and Phase 2 Water Cycle Strategy for Major Growth Areas in and around Cambridge, which confirms that the 300mm diameter sewers that are situated in advance of the trunk sewer will not have sufficient capacity to accommodate the discharge from the development and indicates that it will not be feasible to connect to the existing sewer nearer to the proposed access with Madingley Road.

2.2 Existing topography

The site is generally at a higher level than the existing adjacent urban area situated to the south; it would therefore be feasible to provide a gravity sewer connection to the existing sewer network, however the provision of a full gravity system would necessitate deep excavations that would be expensive to construct, difficult to maintain and would not be capable of effectively attenuating the peak flow.

Foul water will therefore be drained by gravity to the lower levels within the development and pumped rising mains will be provided from these locations to convey foul water from the site to the existing publicly owned 1200mm diameter trunk sewer located downstream of the junction between Madingley Road and Wilberforce Road, to the southeast of the site.

A total of four foul pumping stations will be required to permit the on site foul sewerage network to be installed with minimum cover in order to minimise construction costs and ensure that the sewer can be safely maintained.

2.3 Phasing

The development will be brought forwards in phases. The v9 development schedule and v9 phasing plan have been issued to Anglian Water and they are aware of the proposed loads on their foul water network and sewage treatment works and when they are proposed to occur.

The first pumping station to be built will control the discharge from the site and will attenuate the flows from the other pumping stations to ensure that the capacity of the receiving sewer is not exceeded.

In general, as the development expands, each network and pumping station will be constructed before the units are occupied. However, temporary pumping stations may be required in the event that small parcels of land are developed within a larger catchment to remove the requirement for permanent pumping stations to manage low flows which would be impracticable. All foul flows will be directed via the first pumping station to be built to ensure that discharge rates are acceptable.

3. DESIGN CRITERIA

3.1 Design standards

The Flood and Water Management Act 2010 (FWMA) aims to improve both flood risk management and the way our water resources are managed.

Mandatory Build Standards (MBS) will be introduced, which will require Sewerage Companies to adopt and maintain new foul sewers connecting to the public system. The Mandatory Build Standards will ultimately introduce a requirement for all new sewers, lateral drains and pumping stations serving two or more properties that connect to the public sewer to be offered for adoption to Sewerage Companies.

An Access Point (point of demarcation) at the boundary between an adoptable sewer and private drain, will be incorporated into the design at or within 1 metre of the border of each individual curtilage or property to comply with the requirements of Sewers for Adoption 7th Edition or subsequent updates of this document (SfA 7th).

Any pipe and associated access upstream of the point of demarcation will be a private drain and will be designed in accordance with the Building Regulations and BS EN 752 'Drain and sewer systems outside buildings'. Drainage that extends downstream of the demarcation chamber will be designed to SfA 7^{th} .

3.2 Flow rates by tenure

Table 3-1 presents a schedule of typical foul water discharges by tenure which have been submitted to Anglian Water for approval. These have been developed based on the following parameters:

- All domestic properties will be Code for Sustainable Homes Level 5.
- All non-domestic properties will be BREEAM Excellent or BREEAM Outstanding where viable
- Due to the high proportion of 1, 2 & 3 bed properties the SfA 7th flows of 4000l/day/unit are considered excessive and giving rise to concerns about achieving self cleansing velocity at regular enough intervals to minimise blockages.
- In smaller 1, 2 & 3 bed units a higher flow rate of 2001/head/day has been assumed
- In larger 4 & 5 bed units a lower flow rate of 150l/head per day, capped at 4000l/unit/day has been assumed.
- Academic and Commercial Research Final usages are unknown at this time. A flow rate of 1.3l/s/Ha (SFA 7th - B5.1.2) has been assumed
- Student Housing Flow rates as per studio flat have been assumed for each of the 2004 units to be provided.
- Other Uses:
 - University Accommodation Office and Police Office are considered to have low flows only domestic component of 0.6l/s/Ha has been assumed (SFA 7th - B5.1.2a).
 - Senior Care Home, University Café, Pub, Hotel are considered to have high flows therefore 1.6l/s/Ha has been assumed (SFA 7th - B5.1.2b).
 - CHPs are considered to have a very low flow under normal conditions (typically a staff toilet, shower and kitchenette). Annual boiler inspections require each of the boilers to

be drained. Once the boiler selection is complete the volume of water from this activity can be assessed. Until this assessment can be made 1.6l/s/Ha has been assumed.

	North	West Ca	ambrid	ge - Propo	sed Foul	Design Flow	Rates		
					Flow Rate		Domes	tio	
Usage	Building Type	Number of Units	ber Ama Assumed Life ad htts (m ²) Assumed Life ad Number of (base Occupants BSEN		I he ad/day (based on BSEN 752 Tabel E4)	Peak Flow Rate (Occupants x Flow Rate x 6)	Proposed Foul Peak Flow (Yday) (Max. 4000Vday)	Proposed Foul Peak Flow Rate (Vs/unit)	Non Domestik Flows (Vs)
	Studio Filat	52			200	1200	1200	0.01	
	1 bed Flat	141	4	2	:200	2400	2400	0.03	
	2 bed Flat	225	-	2	200	2400	2400	0.03	-
	2 bed duplex	53		2	200	2400	2400	0.03	-
3	3 bed Fias	37		4	150	3600	3600	0.04	
	2 Bed instace 3 Bed instace	184	_	- 2 - 4	200	2400	2400 3600	0.03	
Market Housing	4 bed terrace	146		4	150	3600	3600	0.04	-
	2 bod somi	27		3	200	3600	3600	0.04	-
	3 bod semi	45		4	150	3600	3600	0.04	
	4 bed semi	18		4	150	3600	3600	0.04	-
	3 beid desach	53		4	150	3600	3600	0.04	
	4 bed detach(1)	48	_	5	150	450.0	4000	0.05	
	4 bed do (ach(2)	45		5	150	4500	4000	0.05	
	5 bed depach	97		5	150	4500	4000	0.05	-
University) Ded File	22	1	2	.200	2400	2400	0.09	2
Market Housing	2 bod Film	11		2	200	2400	2400	0.03)
	a Bod gerrate	11		3	150	2700	2700	8.03	
-	4 bod jertaloc	3		4	150	3600	3500	0.04	
Self Build	4 bed do tach(1)	19		5	150	4600	4000 4000	0.05	
-	4 bed db tech (2) 1 bed Film	470		5	200	2400	2400	0.05	
	2 bed Flas	710	-	2	200	2400	2400	0.03	
Key Worker	2 bed duplex lies	28		2	200	2400	2400	0.03	
Housing	4 bed shared apes	36		5	150	4500	4000	0.05-	-
	3 bed (entrace /duple.x	215		4	150	3600	3600	0.04	
Acedemic	4 bed terrate	45		5	150	4500	4000	0.05	-
Research			60123				-		1.9
Research	Floorspace	2004	40264 84864	2004	150	1803482	1803482	0.01	13
Housing	Nursery	2004	784	2004	100	Tousman	1000402	0.01	13
	Primary school		3611						1.3
	Community Hall		520						1.3
	Nursery		830					-	13
	Senior care home University Calé		6547 725						1.6
	University accommodation		411		1.11				1.6 0.6
6 C	office					-			
1.1.1.1.1.1.1	PotalL Pub		850 250		-				1.3
	Storage		250						-0
Other Uses	Hovel 130 bads		6127		-				1.8
UNINT USES	Foodstore, 3800 sq.m. gross, 2000sq.m. rej salps		3600						13
	Police Office		100			-			-0.6
	CHP	-	1250		1	-			1.8
	Local Shops		217						0.8
1.	PCT		700						1.2
	Project office/exhibition/ community ans	11216	480	122			· ·		19
	Nursery								13
	CHP (site area)		10019		1			1	-1.8

Table 3-1 Typical foul design flow rates by tenure

3.3 Surface water recycling

The foul discharge from the development will be dependent on the water supply strategy. The Environment Agency defines the average consumption of freshwater as being 150 litres per person per day. However, the Code for Sustainable Homes requires the maximum indoor water consumption to be reduced to 80 litres per person per day for Level 5 and 6.

Potable water demand will be minimised using a three stage approach involving demand reduction, water use management and the use of alternative sources of water, such as surface water recycling to provide a non-potable water network at the development.

Recycling surface water to provide a non-potable water supply should reduce the potable water demand per dwelling but the level of reduction is unlikely to make the development independent of potable water supply on the grounds of water quality, volume demand, water pressure and long-term responsibility for maintenance. The on site sewerage network and receiving public sewer will therefore be required to accommodate the full foul discharge from the development and no allowance will be included for a reduction in flow due to the provision of surface water recycling to supply a non-potable water network.

3.4 Sewer Layout and Easements

Section B of SfA 7th provides the requirements for sewer layouts and access for maintenance.

3.5 Minimum pipe diameters and gradients

BS EN 752 'Drain and sewer systems outside buildings' provides the requirements for minimum pipe diameters and gradients.

3.6 Pumping Station Geometry

Pumping stations should be designed in accordance with Section D of SfA 7^{th} Edition. A standard layout is provided in Figure D.3 – minimum size of 8m x 12m.

Given the limited discharge from this development, on-site storage will be provided. The pumping station wet wells will be increased in size to accommodate the required storage. The pumping stations shown on the drawings in **Appendix E** have been assigned a size to accommodate an increased wet well. Final layouts and sizes of pumping station will be confirmed during detailed design in consultation with Anglian Water.

3.7 Adoption and maintenance

All foul sewers will be adopted by Anglian Water in accordance with SfA 7th Edition, with the exception of sewers that are within the curtilage of a building, which will be privately maintained.

4. DESIGN OPTIONS

There are two options for the foul sewer network at the site, a full gravity network and a gravity network incorporating pumping stations.

4.1 Full gravity network

The site is at a higher level than the adjacent area and it would be feasible to provide a gravity sewer connection to the existing sewer network.

As the provision of a full gravity system would necessitate deep excavations that would be expensive to construct, difficult to maintain and would not be capable of effectively attenuating the peak flow it is not the preferred option.

4.2 Gravity network incorporating pumping stations

Under this arrangement, foul water would be drained by gravity to the lower levels within the development. Pumped rising mains would be provided from the pumping stations on Networks 2, 3 and 4 into the site gravity network, which would discharge to the pumping station on Network 1. The Network 1 pumping station would then convey foul water from the site to the existing publicly owned 1200mm diameter trunk sewer located downstream of the junction between Madingley Road and Wilberforce Road, to the southeast of the site.

The proposed pumping stations would be used to balance flows in order to minimise the effect of the development on the receiving foul sewer. Additional storage would be provided to ensure that the 42.4l/s capacity of the existing trunk sewer is not exceeded and that the risk of sewer flooding is not increased. Sewers for Adoption requires storage to be provided at each pumping station to ensure that the anticipated discharge may be accommodated below ground for a period of twenty four hours in the event of a pump failure.

5. FOUL DRAINAGE CATCHMENTS AND PREDICTED FLOW RATES

The base principles for the foul drainage network shown on drawing D127313-500-120 (see **Appendix E**) were submitted as part of the OPA. The assumptions relating to overall strategic layout, number of pumping stations, peak flows etc, from the concept design have been reviewed against the updated phasing, topography, layout and other constraints.

5.1 Catchments

The site has been split into four foul drainage networks:-

- Network 1 Predominantly the Phase 1 area.
- Network 2 Eastern side of the site, east of the SSSI area.
- Network 3 West of Network 1, except the three plots which form Network 4.
- Network 4 Plots D1, D2 and D3.

5.2 Pumping Stations

Due to the topography of the site four pumping station are required. A review of the need for pumping stations has been undertaken to ensure that only the minimum number are provided. The review showed that removal of any of the pumping stations would result in a significant lengths of sewer pipe exceeding 4m deep with some areas in the 8-10m deep range and inverts at the pumping stations exceeding 6m deep. This was not considered practical or safe to construct or maintain. Therefore, the optimum number of pumping stations is four.

The pumping stations (PS) only pump the sewage the minimum distance required to overcome the topographical constraints, operating as follows:

- Network 4 PS discharges into the Network 3 gravity sewer adjacent to parcel D5
- Network 3 PS discharges into the Network 1 gravity sewer adjacent to parcel B3
- Network 2 PS discharges into the Network 1 gravity sewer adjacent to parcel A28
- Network 1 PS discharges into the trunk sewer in Madingley Road

5.3 Foul Distribution

The development schedule (see **Appendix C**) shows the mix of housing or other uses on each plot; from this a total discharge from each plot has been calculated using the flows given in Table 3-1.

A foul distribution table has been produced for each network and each plot, based on the V9 development schedule (see **Appendix C**). A percentage of the total flow from each plot has been assigned to relevant pipes in the network. A summation for each pipe gives the total flow entering that pipe (far right column of the distribution table). This figure has been entered into the WinDES model to determine the pipe sizes, levels and gradients.

Since this development has a number of pumping stations which discharge back into the gravity network within the site, it has been assumed that where a rising main discharges into an adjacent gravity network, it discharges at the same flow rate that would be used in a full gravity solution. These in-direct discharges are highlighted in yellow on the distribution table.

The drawings included in **Appendix F** graphically show the key trunk sewers through the entire development along with details of the distribution information built into the schedule

listed above. The drawings also show the catchment areas served by each foul network with the plots colour coded for each foul network.

5.4 Total Flows, Attenuation and Discharge

The peak foul flow from the development is 142l/s. This exceeds the permitted discharge to the Anglian Water trunk sewer of 42.4l/s and attenuation will therefore be required. Anglian Water are reviewing the permitted discharge figure as part of the ongoing discussions and application process with a view to increasing this value, thus reducing the volume of attenuation required.

Each pumping station will be designed in accordance with SfA 7th to provide attenuation in the event of failure in addition to the attenuation required due to limited discharge. The level of attenuation to be provided will be confirmed during detailed design in consultation with Anglian Water.

5.5 Modelling Approach

Network models have been built in Civil3D and WinDES to construct the plan layout and hydraulic properties of each of the four foul drainage networks.

A Civil3D surface model was built comprising the following:-

- Phase 1 surface levels (URS RIBA C)
- Surface levels across the parcels outside Phase 1, based on a designed centreline of the roads and tie-ins to existing levels at the boundaries.

This model has been used to assign cover levels to manholes and check pipes for appropriate cover depths.

The plan layout of the foul sewers has been developed using the following information:-

- Phase 1 Road layout
- V9 road, parcel, building layout for areas outside Phase 1 (provided by AECOM 10/10/12).

WinDES models have been built for each of the four foul networks to determine the pipe sizes and gradients. Flows from the distribution table have been inserted in to the model to generate the peak flows and $1/3^{rd}$ design flow velocities.

The WinDES models have been optimised to, where possible, remove pipe runs deeper than 4.5m and minimise the depth to invert at the pumping station locations to ensure that the pumping station wet well depths are also minimised.

6. MODELLING RESULTS

The outputs from the WinDES simulations for the four foul drainage networks are included in **Appendix D**. Outlined below are the key results from the design of the four networks (which are also summarised on drawing D127313-500-120).

Network 1 covers all of the initial development and includes the main pumping station that discharges all of the foul sewage from the development to the trunk sewer in Madingley Road. The key parameters from the analysis are outlined below:-

- Maximum Pipe Size 525mm
- Typical Sewer Depths 1.5m 4.2m
- Maximum Sewer Depths 6.7m (see below)
- Emergency Storage Volume will be confirmed during detailed design in consultation with Anglian Water
- Attenuation Storage Volume will be confirmed during detailed design in consultation with Anglian Water

The design and analysis of Network 1 has highlighted that pipes 1.003 to 1.014 have depths exceeding 5m, up to a maximum of 6.7m. Further discussions will need to be undertaken with Anglian Water to ensure both the risks associated with construction and maintenance of pipelines at this depth are mitigated.

Network 2 covers the north-east corner of the site, with the rising main from this network discharging back into the Network 1 gravity sewer at pipe 9.000. The key parameters from the analysis are outlined below:-

- Maximum Pipe Size 300mm
- Typical Sewer Depths 1.35m 2.2m
- Maximum Sewer Depths 3.2m
- Emergency Storage Volume will be confirmed during detailed design in consultation with Anglian Water
- Attenuation Storage Volume will be confirmed during detailed design in consultation with Anglian Water

Network 3 cover the area west of Network 1, except the three plots which form Network 4, with the rising main from this network discharging back into the Network 1 gravity sewer at pipe 18.000. The key parameters from the analysis are outlined below:-

- Maximum Pipe Size 300mm
- Typical Sewer Depths 1.35m 2.5m
- Maximum Sewer Depths 4.2m
- Emergency Storage Volume will be confirmed during detailed design in consultation with Anglian Water
- Attenuation Storage Volume will be confirmed during detailed design in consultation with Anglian Water

University of Cambridge — North West Cambridge NWC1-URS-SW-SWD-XX-RPT-CE-0004

Network 4 covers plots D1, D2 and D3 with the rising main from this network discharging back into the Network 3 gravity sewer at pipe 7.001. The key parameters from the analysis are outlined below:-

- Maximum Pipe Size 150mm
- Typical Sewer Depths 1.35m 2.0m
- Maximum Sewer Depths 3.2m
- Emergency Storage Volume will be confirmed during detailed design in consultation with Anglian Water
- Attenuation Storage Volume will be confirmed during detailed design in consultation with Anglian Water

Attenuation and emergency storage volumes were determined for the site during the OPA. These volumes are shown on the drawing in **Appendix E**. However, the distribution has altered and is now based on the matrix in **Appendix C**; the storage volumes will therefore need to change to reflect the revised distribution matrix. In addition to the distribution changes, Anglian Water have indicated that they will review the storage volumes and may use alternative storage durations to those within Sewers for Adoption.

SfA states that foul pipes should have a velocity of 0.75m/s at 1/3 design flow (B4 Item 9). Due to the topography of the site it is not possible to achieve this criteria on a number of the pipes in all four networks without the depths of the pipes and inlet invert depth at the pumping stations becoming excessive. In these situations the alternative criterion of the following have been applied:

- A 150mm nominal internal diameter gravity sewer is laid to a gradient not flatter than 1:150 where there are at least ten dwelling units connected; or
- A sewer or lateral drain with a nominal diameter of 100mm, or a lateral drain serving ten or fewer properties is laid to a gradient not flatter than 1:80, where there is at least one WC connected and 1:40 if there is no WC connected.

7. CONSULTATIONS

We have had an ongoing dialogue with Anglian Water throughout the concept design and OPA stages of the project. This dialogue has continued through the RIBA C infrastructure design. Copies of the key correspondence are included in **Appendix G**.

- 08/10/12 Submission of proposed foul discharges by unit type to Anglian Water for Approval.
- 02/10/12 Submission of Section 98 Application for Requisition of New Public Sewer
- 14/09/12 Teleconference with Anglian Water to discuss Section 98 application
- 30/08/12 Provided Anglian Water with a copy of the development schedule
- 09/08/12 Met with Anglian Water to discuss Foul Drainage
- 15/02/13 Met with Anglian Water and Turner and Townsend to discuss S98 Application
- 09/04/13 Email confirmation from Anglian Water that the Foul Drainage Strategy is acceptable

8. CONCLUSIONS

This report demonstrates that four pumping stations are required to minimise the impacts of the topography on the depths of the pipes and pumping station wet wells. The locations of the pumping stations indicated on the drawing presented as part of the OPA (see **Appendix E**) have been tested and the positions updated to suit more accurate information on the proposed site topography.

The adopting authority (Anglian Water) has confirmed that the high level drainage strategy for connection flows to the public foul sewer is acceptable (see **Appendix G**). As agreed with Anglian Water some details such as the following will be subject to ongoing discussions:-

- Agreement of foul design flows by unit type
- Agreement of pumping station locations, sizes, access requirements etc
- Progression of Section 98 application.

APPENDIX A – PLANNING POLICY

North West Cambridge Area Action Plan

Policy NW26: Foul Drainage and Sewage Disposal

Development of any single phase will not result in harm in the form of untreated wastewater or increased flood risk from treated wastewater. Planning conditions (which may include 'Grampian' style conditions) will link the start and phased development of the site to the availability of wastewater treatment capacity and the capacity of receiving watercourses.

The foul water produced at the site will be directed to Cambridge Sewage Treatment Works at Milton to take advantage of consolidating existing facilities. Anglian Water are currently undertaking an appraisal of sewerage provision for the whole catchment and the outcome of that appraisal will inform the approach to be followed for foul water arising from North West Cambridge.

In accordance with the requirements of the WFD, the treatment of wastewater must not cause deterioration of the water environment. The options for the treatment of foul drainage and sewage disposal from the site will need to be agreed with the Environment Agency to ensure that development does not result in further pressure on the water environment and compromise WFD objectives.

Phase 1 Water Cycle Strategy for Major Growth Areas in and around Cambridge (October 2008)

The Phase 1 Water Cycle Strategy assesses the potential impacts and constraints associated with the proposed major development areas by considering flood risk, water resources and supply, foul sewerage, wastewater treatment, water quality and water related ecology. This study establishes the most effective foul drainage and water supply strategy for all development in the Cambridge catchment and contains the following conclusions and recommendations in relation to the Proposed Development:

Foul Drainage, Sewage Treatment and Water Quality

The discharge consent at Cambridge WwTW will not require revision to accommodate the increased flow from the infill or strategic development sites within Cambridge. However, improvements will be needed to the treatment works in order to maintain the quality of the effluent discharged to the River Cam. AWS will seek investment to facilitate these improvements through its regulatory periodic review process for implementation in AMP5 (2010-15) and AMP6 (2015-20)

The large diameter sewer network can accommodate all of the flow from the strategic developments without upgrade. The majority of sites will need to provide strategic connection sewers to connect into the large diameter sewer network.....Northwest Cambridge will connect into the branches of the tunnel network on Madingley and Histon Road.

Phase 2 Water Cycle Strategy for Major Growth Areas in and around Cambridge (October 2010)

A Phase 2 report was completed by consultants for Cambridge Horizons and considered the recommendations made in the Phase 1 report which focused on identifying a strategy and providing the technical evidence base to show how new sustainable water services infrastructure for the Major Sites in and around Cambridge (including the North West Cambridge University site) could be delivered to maximise three opportunities:

- aspiring to water neutrality;
- improving biodiversity by protecting environmental water quality and hydromorphology, and;
- protecting and enhancing communities through sustainable surface water management.

The Phase 2 Water Cycle Study contains the following conclusions and recommendations in relation to the Proposed Development, which have been integrated into the proposals:

Foul Drainage, Sewage Treatment and Water Quality

At Cambridge WwTW, up to and including 2031, no consent change is required for ammonia to ensure no deterioration of the current WFD status downstream of the treatment works. However, the BOD consent will require marginal tightening from 15mg/l to 13mg/l, and a phosphate consent of 3 mg/l would be required (current phosphate discharge is 0.73 mg/l).

However, to meet WFD good status at Cambridge WwTW with 2031 growth flows, the BOD and ammonia consent would require tightening and that this is achievable with conventionally applied wastewater treatment technology. This analysis therefore shows that BOD and ammonia are not constraints to growth.

To meet good status for phosphate at Cambridge WwTW with the current population, even assuming the river quality upstream of the treatment works is good status, would require a mean annual average discharge consent of 0.23 mg/l. This is significantly beyond what can be achieved by current sewage treatment technology (1 mg/l). To meet good status for phosphate with the 2031 population tightens this consent from 0.23mg/l to 0.21mg/l.

Our interpretation of the current policy on assessing WFD consents in water cycle studies is that where WFD status cannot be met with the current population with conventionally applied sewage treatment technology, growth per se should not be considered a barrier to achieving good ecological status, subject to the assessment showing there will be no deterioration of current status.

Therefore, water quality environmental capacity and WFD compliance should not be a constraint to growth at Cambridge WwTW or Uttons Drove WwTW. The Environment Agency is responsible for determining through the RBMP if and when the consent will need to be tightened to achieve good ecological status for BOD and Ammonia, and securing water company funding for any infrastructure requirements that will be required as part of the National Environment Programme section of the appropriate Periodic Review.

Wastewater Networks

Additional housing growth will cause an increase in foul flows to the wastewater network. If no mitigation is put in place there is a risk that flooding due to under capacity and pollution due to overflows from the network could increase. The Phase 2 WCS defines the location of connections to the existing foul sewer and summarises AWS' preferred strategy to upgrade the wastewater networks to accommodate planned growth within Table 6-9, which is duplicated below.

Site name	Impact on sewer network	Proposed mitigation
Huntingdon / Madingley Rd (university site)	Site would connect to sewer in Madingley Road, which would cause increase in sewer flooding.	Connect development downstream of Madingley Road (1000m from site) on the 600mm diameter sewer

Table 6-9 Summary of impact of growth on wastewater network (adapted from Phase 1 WCS and Cambridge wastewater capacity study)

AWS are progressing their preferred wastewater strategy to accommodate development of the major growth sites in and around Cambridge. Upgrades will be required at both Cambridge and Uttons Drove WwTW, and the networks which drain flows to these works will also require localised upgrading. Upgrades to the WwTW and the wastewater networks will be funded through Periodic Review process and Requisition under Section 98 of Water Industry Act 98.

With respect to wastewater and water quality, the Phase 2 WCS has demonstrated that there are no environmental constraints to growth. In particular:

- although new consents will be required at both Cambridge and Uttons Drove WwTWs to ensure no deterioration of current WFD status, these will be within the limits of conventional technology for sewage treatment;
- growth will not hinder the ability of the receiving water bodies achieving good physico-chemical status, as required by the WFD, and;
- the discharge volumes from the combined sewer overflows is not anticipated to increase due to the major growth sites, but there is a risk it could increase due to additional flows from infill development (see Phase 1 WCS).

Flood risk downstream of the WwTW due to an increase in treated sewage effluent has also been assessed in the Phase 2 WCS. At Cambridge WwTW the risk of increased flood risk has been assessed to be low due to planned development up to 2031; therefore no mitigation will be required.

APPENDIX B – ANGLIAN WATER SEWER RECORDS

Zarina Atkins The Hub 500 Park Avenue Almondsbury Bristol BS32 4RZ

07 July 2010

Dear Sirs,

RE: ASSET ENQUIRIES

Thank you for your recent search request(s). Please find below a summary of items included in this dispatch.

Yours faithfully

Queue Watcher Asset Information Advisor

Item Ref	Product / Service	Reference	Address
A810193-1	General Enquiry Regular - Sewer Only	14384	SITE AT M11 HUNTINGDON ROAD
			NOAD

Atkins The Hub 500 Park Avenue Almondsbury Bristol BS32 4RZ

Your ref: 14384

Dear Sirs,

SITE AT M11, HUNTINGDON ROAD, MADDINGLY ROAD, CAMBRIDGE, CB3 0JX

Thank you for your enquiry in connection with the above site.

Please find enclosed copy of records and/or drawings of assets belonging to Anglian Water Services Limited (Anglian Water) in the vicinity of the above site. Anglian Water has provided this information in good faith on the understanding that it is the best information available at this time. However, Anglian Water can accept no liability in respect of the information provided and your attention is drawn to the disclaimer on the information provided. Please note that sewer drawings generally show only public sewers and not private sewers.

Please be advised that our records show there are no public water mains in the vicinity of the works.

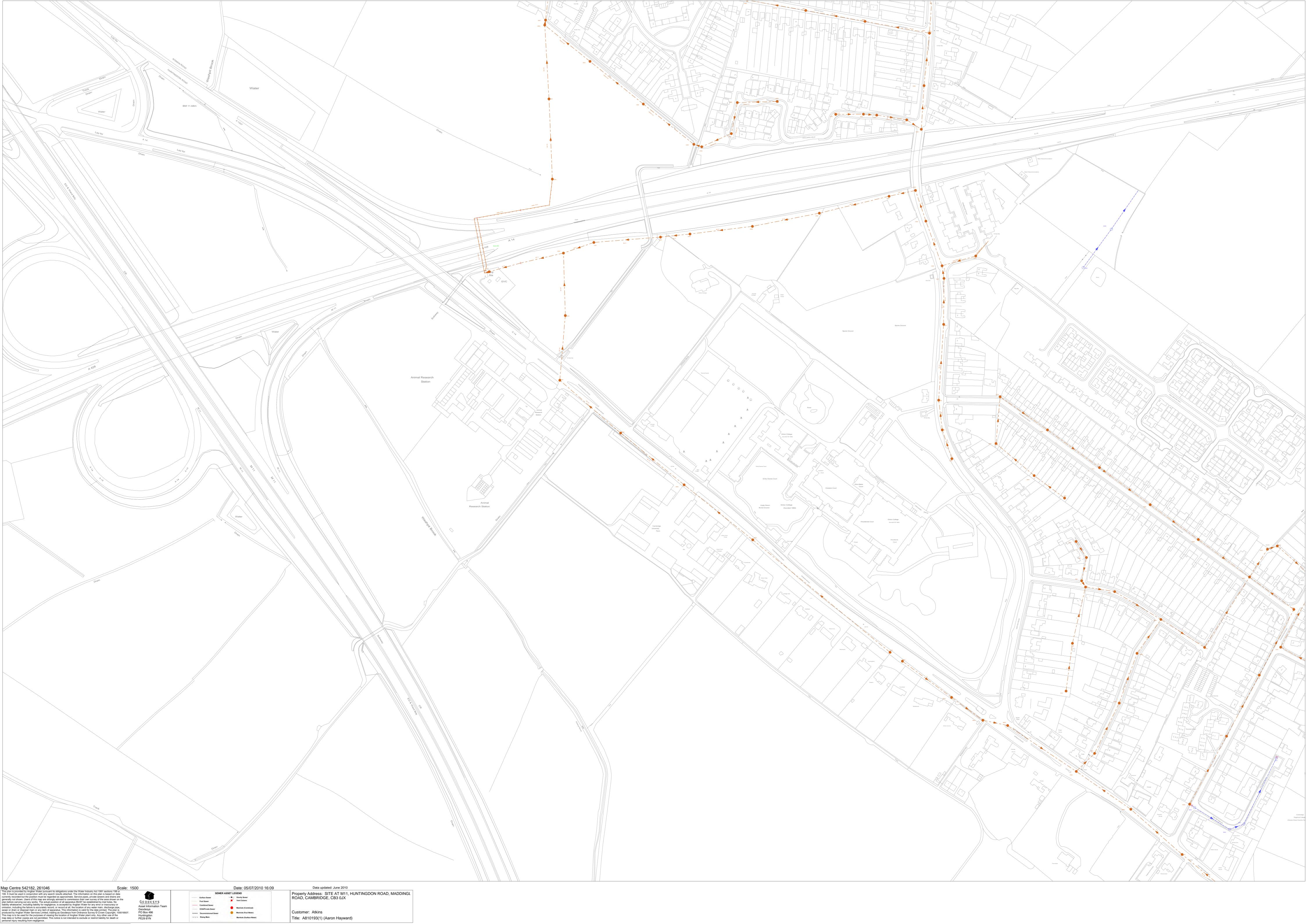
For Mains Water information relevant to this enquiry please contact:

Cambridge Water Company Plc, 90 Fulbourn Road, Cambridge, Cambs, CB1 9JN, Tel: 01223 403000, www.cambridge-water.co.uk

Water Service connections are not shown but may normally be traced from stop tap boxes. The possibility of damage or disturbance to connections must be avoided at all times.

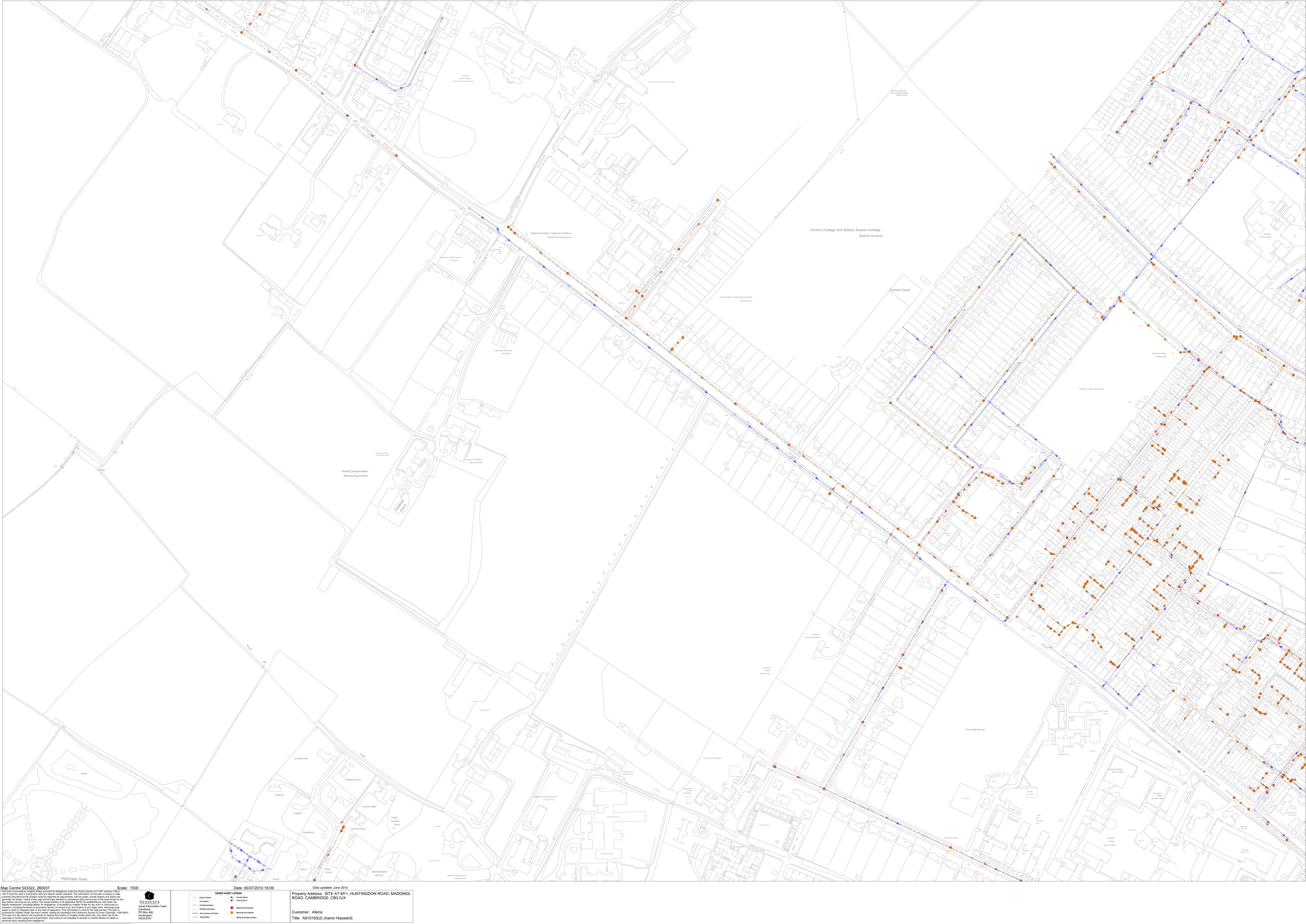
Large species of trees should not be planted within five metres of Anglian Water apparatus/assets to reduce the possibility of damage from roots.

To avoid incurring costs arising from damage or disturbance to Anglian Water apparatus/assets we recommend the use of manual rather than mechanical excavation to ascertain their depth. Please contact us on 08457 145 145 if you are excavating to more than 450mm or if your activity may cause ground movement or vibration.

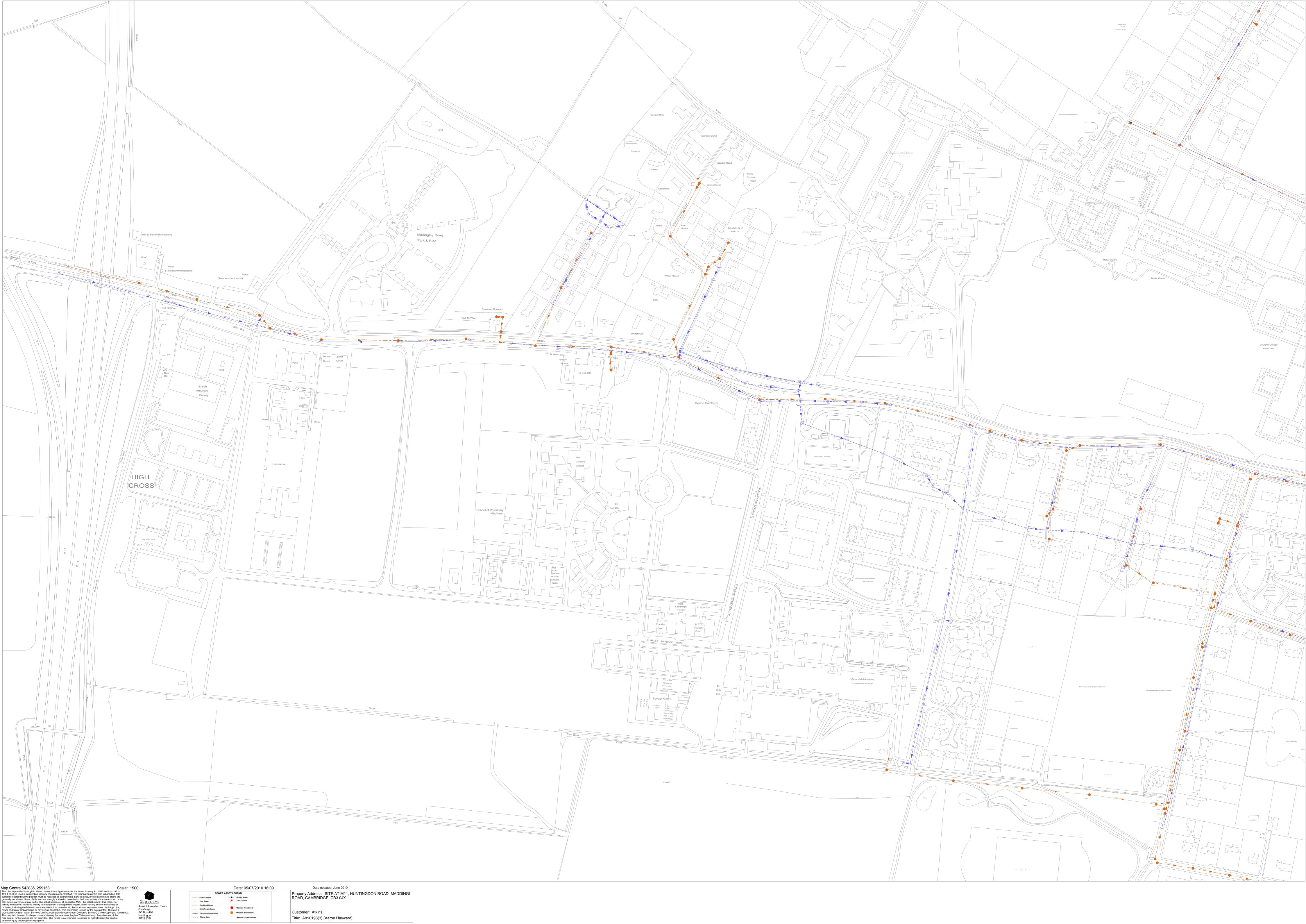

If you should wish to discuss connections, supplies, build overs or pre-development and capacity information please contact Developer Services on 0845 6066087.

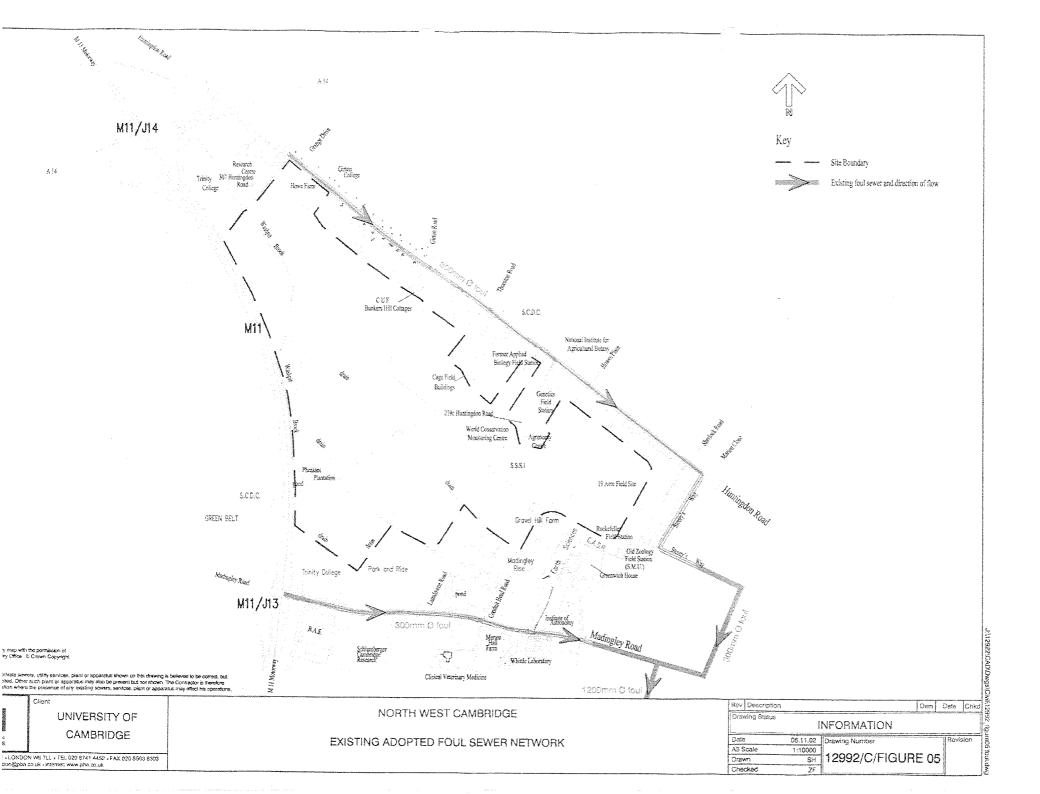
Yours faithfully

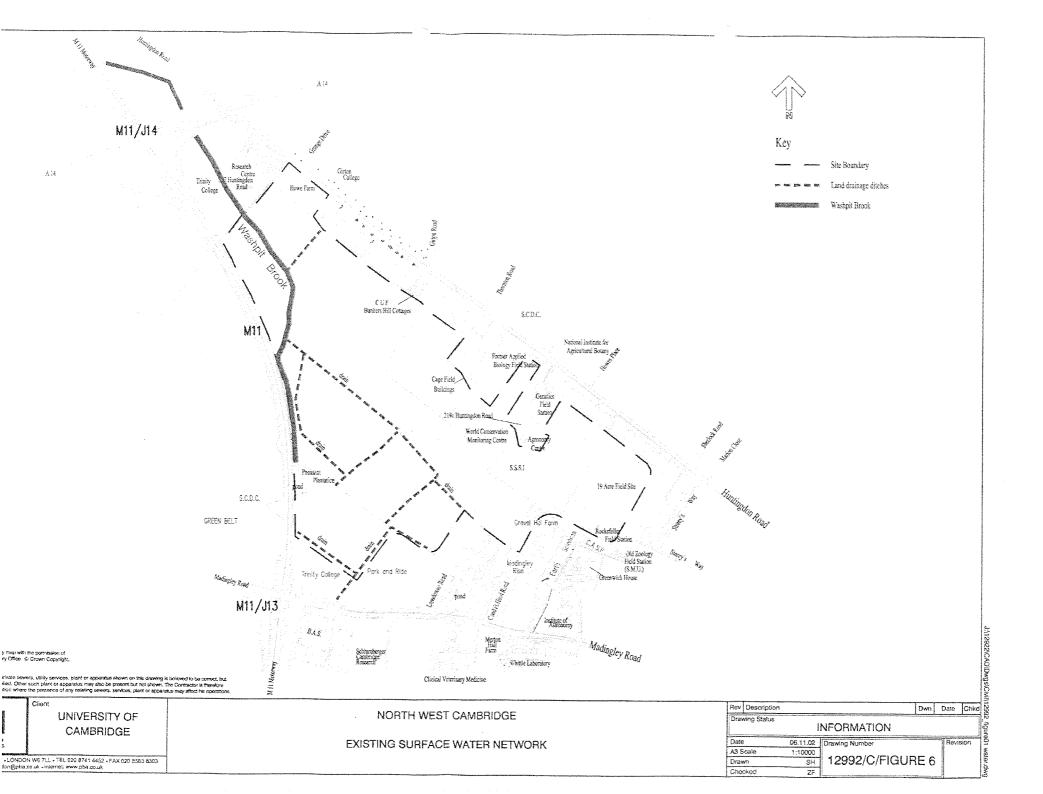
Aaron Hayward Customer Support Coordinator



Spencer House, Spitfire Close, Ermine Business Park Huntingdon, Cambridgeshire, PE29 6XY Tel: +44 (0) 1480 323891 Fax: +44 (0) 1480 323892 www.geodesys.com


----- Rising Main


Manhole (Surface Water)



----- Rising Main

Manhole (Surface Water)

	PETER BRETT ASSOCIATES	Services Ltd
Mr Z. Fonseca	PROJECT NO: 12997	Colchester STW Haven Road
Peter Brett Associates	PARTNER:	Colchester
26-28 Hammersmith Gro	PROJECT CO-OFDINATOR:	Essex CO2 8HT
London		CO2 601
W6 7LL	11 NOV 2002	Tel 01206 28938
	D.317 SUTION:	Fax 01206 28921

Dear Zito,

Re: Potential Development, NW Cambridge.

I refer to your facsimile dated 6 November 2002 regarding the proposed mixeduse development in Cambridge.

In order for Anglian Water to confirm whether we have capacity in our existing network to take flows from the proposed development it would be necessary to carry out a full drainage study of the area in question and also investigate what works are required, if any, at Cambridge Sewage Treatment Works to cope with the additional demand.

It is almost certain that Anglian Water will not consider specifically catering for the development unless it is allocated within the Cambridge City Local Plan.

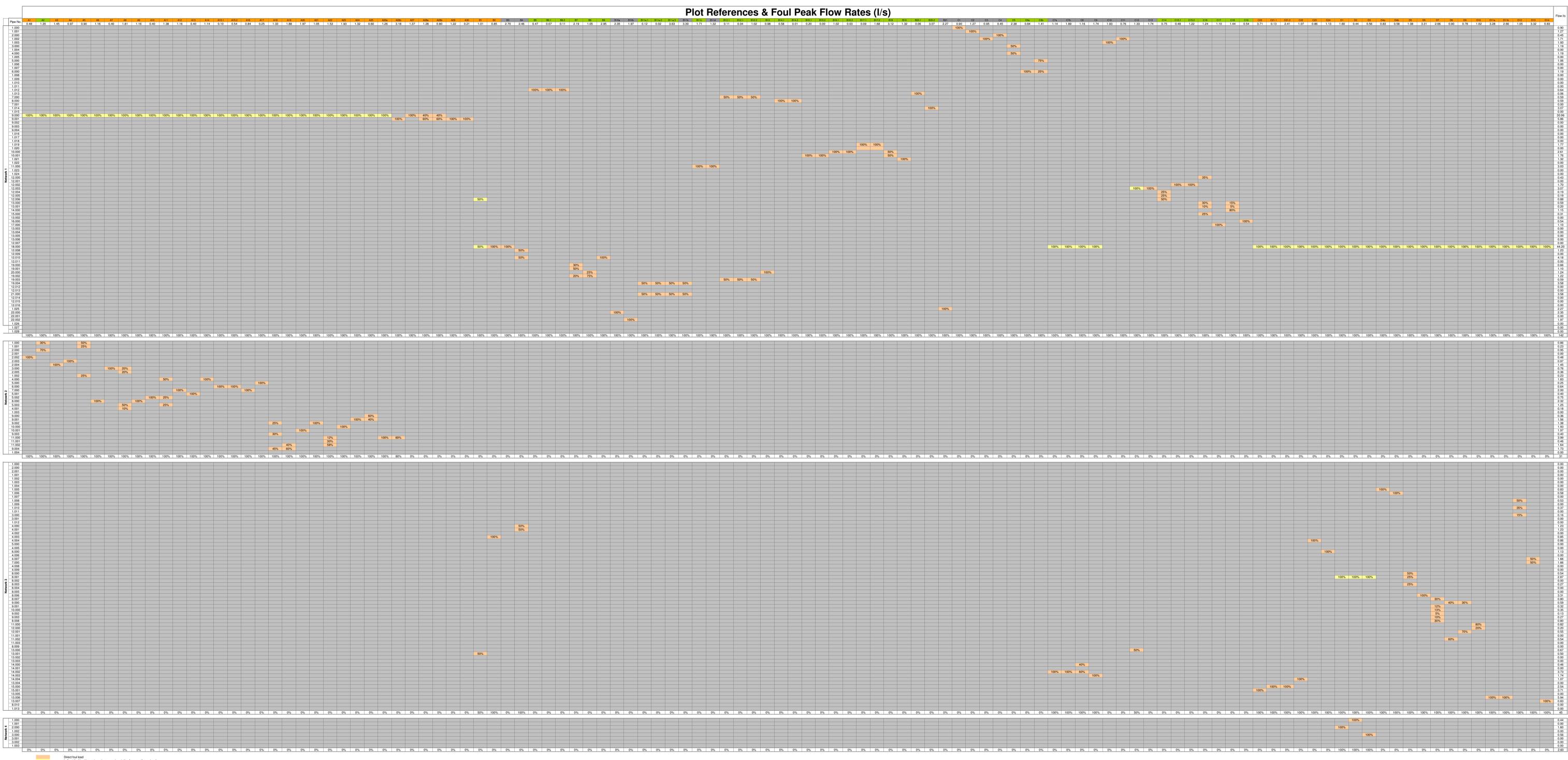
My initial thoughts are that foul flows would certainly need to be directed to the 1200mm foul sewer, south-east of the site which is approximately 12m deep. It is unlikely that any existing public surface water sewers will have capacity to take flows from the site and therefore an alternative method of surface water drainage would need to be considered.

Should you require any further information, do not hesitate to contact me at the above address.

Yours sincerely,

Steve Raven Development Engineering

Registered In England No 2366656 Registered Office: Anglian House, Ambury Road, Huntingdon, Cambridgeshire. PE29 3NZ



APPENDIX C – FOUL PEAK FLOW TABLE AND FOUL SEWER DISTRIBUTION TABLE

North West Cambridge Development Schedule Version 9A

			Market Housing			University Marl	ket Housing	Self Build	Key	Worker Housing		Academic Research	Commercial Student Research Housing		Other Uses	
	Studio 1 bed 2 bed 2 bed	3 hed 2 Red 2 Pod		bed tach 4 bed 5 bed	No of hab	1 bed 2 bed 3 E	Sed 4 bod	4 bed detach 4 bed	2 bed 1 bed 2 bed duplex	3 4 bed shared t	3 bed errace 4 bed					Foul Pea
Land Use	Flat Flat Flat duple:	Flat terrace terrace	e terrace semi semi semi detach (1) detach (2) detac	h Total Market rooms	Flat Flat ter	race terrace	e (1) detach (2	Plat Flat flat	apts //	duplex terrace	sq.m.	Floorspace rooms	Area	Area Area I	by Plot N
ul Peak Flow by Unit Type (See Table 3-1) Residential Residential	0.01 0.03 0.03 2 6 8 0 0 0	0.03 0.04 0.03 0.0 0 1 0 0 0 0 0 0	0.04 0.04 0.04 0.04 0.04 0 0 0 0 0 0 0 0 0 0 0 0 0	0.05 0.05 0	0.05 0 17 42 0 0 0 0	0.03 0.03 2 0 0 0 0 0	0.03 0 0 0	.05 0.05 0.09 0 13 14	5 0.03 0.03 0.03 0 0 0 0 0 4 0 0 0 0	0.05	0.04 0 0	0.05 1.3 0 - 0 -	0 1.30 0 	.01 0.6	i0 1.30 1.60	
Residential Residential	0 0 0 3 12 17	0 15 1 0 2 0	16 9 0 0 0 0 0 0 0 0 0 0 0	0 0 0	0 40 179 0 34 85		0	0 0		0	0	0 - 0 -		· ·		
Residential Residential	0 0 0 3 12 17	0 0 6 2 0	0 0 0 0 5 0 0 0 0 0 0	5 5 0 0	4 19 113 0 40 86		0	0 0	0 0 0 0	0	0	0 - 0 -		-		
Residential Residential	0 0 0 0 0 0	0 4 0 19 1	4 3 0 0 0 0 0 19 12 0 0 0 0 0 0	0 0 0	0 11 50 0 50 224		0	0	0 0 0 0	0	0	0 - 0 -		-		
Residential Residential	3 12 17 0 0 0	6 2 0 0 4	0 0	0 0 0	0 40 86 0 11 50		0	0	0 0 0 0	0	0	0 - 0 -		-		
Residential Residential	0 0 0 3 12 17	0 14 1 6 2 0	14 10 0	0 0 0	0 38 172 0 40 86		0	0 0	0 0 0 0	0	0	0 - 0 -		-		
Residential Residential	0 0 0 0 0 0	0 4 0 0	4 3 0 0 0 0 0 0 0 0 0 0 0	0 0 0	0 11 50 0 0 0	0 0 0	0	0 0	0 0 8 4	0	0	0 - 6 -		-		
Local Centre/Community Nursery Residential	0 0 0 0 0 0	0 0 0 0 0	0 0	0 0 0	0 0 0 0 0 0	0 0 0	0	0 0	0 0 6 12	0	0	0 - 0 -			784	
Residential Residential	3 9 13 0 0 0	3 1 0 0 3	0 0	0 0 0	0 29 65 0 7 30		0	0 0	0 0 0 0	0	0	0 - 0 -		-		
Residential Residential	0 0 0 0 0 0	0 0 0	0 0 0 0 7 20 12 0 0 0 0	7 7 0 0	7 28 168 0 52 232		0	0	0 0 0 0	0	0	0 - 0 -		-		
Residential Residential	0 0 0	0 0	0 0	0 0	0 0 0 0 0 29 130	0 0 0	0	0	8 4 0 0	0	29	9 - 0 -		· ·		_
Residential Residential	0 0 0	0 15 1	16 11 0	0 0	0 42 191 0 0 0		0	0	0 0	0	0	0 - 9 -		· ·		_
Residential Residential	0 0 0	0 12 1	15 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 5 0 0 5 0 0 5 0 0 0 5 0 0 5 0 0 5 0 0 5 0 0 0 5 0 0 0 5 0	0 0 3 3	0 36 165 2 13 75		0	0	0 0	0	0	0 - 0 -		· ·		_
Residential Residential	0 0 0	0 0 0	0 0	0 0	0 0 0	0 0 0	0	0	12 30 24 27	0	0	0 - 5 -	-			_
Academic Research Academic Research	0 0 0	0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0	0 0 0	0 0 0	0	0	0 0	0	0	0 10,550 0 9,873		· ·		
Academic Research Academic Research			0 0 0 0 0 0 0 0 0 0 0 0	0 0			0	0		0	0	0 6,130 0 9,420	•	- -		
Academic Research Academic Research		0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0	0 0 0	0 0 0	0	0	0 0	0	0	0 1,600 0 7,760	•	· ·		
Academic Research Residential				0 0			0	0	0 0 44 38 8	0	0	0 6,560		-		
Student Housing Primary School			0 0 0 0 0 0 0 0 0 0 0 0 0				0	0			0	0 		46 -	3,611	
Community Hall Nursery			0 0 0 0 0 0 0 0 0 0 0 0 0				0	0			0	0 -			520	
Residential Senior Care			0 0 0 0 0 0 0 0 0 0 0 0 0				0	0		2 0	0	0 -	- -		6,547	
Student Housing Student Housing			0 0 0 0 0 0 0 0 0 0 0 0 0				0	0			0	0 -	- 2	95 - 35 -		
Student Housing University Café			0 0 0 0 0 0 0 0 0 0 0 0 0				0	0		0	0	0 -		97 -	725	
University Accomodation Office Residential			0 0				0	0			0	0 -		411		
Residential Residential			0 0	0 0			0	0	43 37 6 41 72 0 34 23 0		0	0 -	-			
Residential			0 0 0 0 0 0 0 0 0 0 0 0 0				0	0	4 40 (0	0 -				
Retail Pub							0				0	-			850 250	
Residential Hotel (130 Beds)	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	4 30 00 0 0 0	0 0	0	0 - 0 -		-	6,127	
Retail (Foodstore) Police Office	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0	0	0	0 0 0 0 0 0	0 0	0	0 - 0 -		190		
CHP Bring Site	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0	0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0	0	0 - 0 -			1,250	
Residential Retail	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0 0	17 17 0 0 0 0	0 0 0	0	0 - 0 -			208	
PCT Residential	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0	0 0 0 0 0 0	0 0 0 0	0	0	0 0 0 0 19 37 0	0 0 0	0	0 - 0 -		-	700	
Residential Residential	0 0 0	0 0 0 0 0 0	0 0	0 0	0 0 0	0 0 0 0 22 11	0	0	37 60 2 0 0 0	2 3	0	0 - 0 -		· ·		_
Project office/exhibition/community arts Residential	0 0 0 12 41 48	0 0 0		0 0	0 0 0 0 0 108 266	0 0 0	0	0		0	0	0 -	-		480	
Residential Residential					0 82 215 2 21 118	5 0 0	0	0			0	0 -	· ·	· ·		
Residential			5 4 3 3 3 0 2 4 2 2 2 0	3 3	2 31 156 0 23 117	6 0 0	0	0			0	0 -		-		
Residential Residential		0 0 1	3 4 2 3 2 0 2 0 0 0 1 1	3 3	1 10 55	5 0 0	0	0			0	0 - 0 -				
Residential Residential	0 0 0 0 0 0 0	0 0 4 2 8 0 0 1	41 2 0 6 0 0 12 3 0 0 0 0 0	1 1 0 0	4 59 299 0 23 102	2 0 0	0	0		0 0	0	0 - 0 -				
Residential Residential	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 4 1 0 0 0 0	19 2 0 6 0 4 0 0 0 0 0 0 0	1 0 0 0	0 36 175 0 0 0 0	0 0 0 0	0	0	0 0 0 17 16 0	0 0 3	0	0 - 0 -				
Residential Residential	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0	0 0 0	0 0 0 0	0	0	25 38 0 0 0 0 0	0 0	0 19	0 - 8 -		-		
Residential Residential	0 0 0 0 0 0	0 0 0 8 0 15 2	0 0 0 0 0 25 6 0 0 0 0	0 0 0 0	0 0 0 0 0 54 206	0 0 0 6 0 0	0	0 0	14 34 0 0 0 0	0 6 0 0	0	0 - 0 -		-		
Residential Residential	0 0 0 0 0 0	0 0 8 0 0 0 0	7 6 0 0 0 0 0 0 0 0	0 0 0	0 21 95 0 0 0 0	5 0 0 0 0 0	0	0	0 0 0 0 5 7 0	0 0 0	0	0 - 5 -		-		
Residential Residential	0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0	0 0 0	0 0 0 0	0	0	16 32 0 7 18 0	6	0	0 - 0 -		-		
Residential Residential	0 0 0	0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0	0 0 0		11 0	3 0	0 0 0	0 0	0 20	0 - 3 -	- -	- -		
Residential Residential	0 0 0 3 14 19	0 0 0 2	24 7 0 0 0 0 0 0 0 0 0 0 0	0 0	0 31 162 0 38 96		0	0		0 0	0	0 - 0 -	-	- -		
Residential Residential		8 0 0 2 0 1 0		0 0	0 38 180 0 19 47		0	0			0	0 - 0 -		-		
Residential							0	0		0 7	24	0 -	-		991	
Nursery Residential							0	0	0 0 14 18	5	30	0 - 0 -			331	
Academic Research Commercial Research							0	0		0	0	0 8,230 0	6,625			
Commercial Research CHP	0 0 0	0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0		0 0 0	0	0	0 0	0	0	0 -	8,678	-	10,019	
Commercial Research Commercial Research	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0	0 0 0 0 0 0	0 0 0 0	0	0	0 0	0	0	0	3,369 4,310			
Commercial Research Commercial Research	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0	0	0	0 0 0	0	0	0	6,422 4,448	-		
Residential Residential	4 4 12 0 0 0	8 8 0 0 12 1	0 0 0 0 0 12 10 10 12 4 7	0 0 5 5	0 36 80 5 82 400		0	0	0 0	0	0	0 - 0 -		-		
Residential Residential	0 0 0 0 0 0 0	0 5 0 2	5 8 6 7 3 10 2 2 2 2 0 3	7 7 3 3	5 63 328 2 21 109		0	0	0 0 0	0	0	0 - 0 -		-		
Residential Residential	0 0 0	0 2 0 2	2 2 2 4 1 2 2 3 2 2 1 4	2 1 3 3	1 19 95 2 24 126	5 0 0	0	0	0 0	0	0	0 - 0 -		-		
Student Housing Student Housing	0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0			0	0		0	0	0 - 0 -		28 - 56 -		
Student Housing Student Housing Student Housing				0 0			0	0		0	0	0 - 0 -	- 1	05 - 32 -		
Commercial Research	0 0 0 0 0 0 52 141 225	0 0 53 37 184 310	0 0	0 0 48 45	0 0 0 0 37 1,426 5,707	0 0 0 22 11	0	0 3 13 14	0 0 4 470 710 28	0	0 215	0 - 45 60,123	6,413	04 601	I 8,974 28,518	

Direct foul load Indirect foul load i.e. enters via a pumping station from another network

APPENDIX D – HYDRAULIC CALCULATIONS

URS Infrastructure & Env.	ironment UK Ltd	Page 1
Scott House	North West Cambridge	
Alencon Link	FOUL NETWORK 1	
Basingstoke RG21 7PP		LULICIO ON
Date 20.11.12	Designed by I Philpott	
File FW_Net_1.mdx	Checked by	
Micro Drainage	Network W.12.6	

FOUL SEWERAGE DESIGN

Design Criteria for net1.fws

Pipe Sizes net1 Manhole Sizes net1

Industrial Flow (1/s/ha) 0.00 Add Flow / Climate Change (%) 0 Industrial Peak Flow Factor 0.00 Minimum Backdrop Height (m) 0.000 Flow Per Person (1/per/day) 0.00 Maximum Backdrop Height (m) 0.000 Persons per House 0.00 Min Design Depth for Optimisation (m) 0.000 Domestic (1/s/ha) 0.00 Min Vel for Auto Design only (m/s) 0.75 Domestic Peak Flow Factor 6.00 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Network Design Table for net1.fws

PN	Length (m)	Fall (m)	Slope (1:X)			ise (l/s)	k (mm)	HYD SECT	DIA (mm)	
F1.000 F1.001	96.996 96.996				0 0		1.500 1.500	0	<mark>150</mark> 150	
F2.000	36.788	0.245	150.0	0.000	0	0.5	1.500	0	150	
	143.373 60.933				0 0		1.500 1.500	0	150 150	
F3.000	19.910	0.133	149.7	0.000	0	1.2	1.500	0	150	
F1.004	51.003	0.379	134.6	0.000	0	0.0	1.500	0	150	
F4.000	20.195	0.365	55.3	0.000	0	1.2	1.500	0	150	

Network Results Table

PN	US/IL (m)	Σ Area (ha)	ΣBase Σ Flow (l/s)		dd Flow (l/s)	-	P.Vel (m/s)		Cap (1/s)	Flow (l/s)	
	21.050 20.403	0.000 0.000	0.9 2.2	0 0	0.0	27 41	0.41 0.55	0.71 0.75	12.6 13.3	0.9 2.2	
F2.000	21.825	0.000	0.5	0	0.0	21	0.34	0.71	12.6	0.5	
	19.689 18.639	0.000 0.000	4.4 6.3	0 0	0.0	60 73	0.67 0.74	0.75 0.75	13.2 13.3	4.4 6.3	
F3.000	22.189	0.000	1.2	0	0.0	31	0.45	0.71	12.6	1.2	
F1.004	18.188	0.000	7.5	0	0.0	80	0.78	0.75	13.3	7.5	
F4.000	22.237	0.000	1.2	0	0.0	25	0.63	1.18	20.8	1.2	
			©1982-2011	Micro	Drain	nage 1	Ltd				

RS Infra	structi	ire & H	Snvir	onmen	t UK	Ltd		Page	2		
cott Hou	se		N	lorth	West	Cambrid	lge				
lencon L	ink		F	OUL N	ETWOR	K 1		$\int \nabla$	780		
Basingsto	ke RG2	21 7PP								عتره	リ ()
Date 20.1	1.12		I	esign	ed by	I Phil	pott		PS-	ᡝᡗᢅᡏ᠊ᢛ	ECC
File FW N		łx		checke	-		-			<u> </u>	<u>Lift</u>
Micro Dra				letwor		2 6					
	Inage		1	IC CWOI	12 W.T	2.0					
		N		rk Dos	ian 1	able f	or not1	fwe			
		1	etwo.	IK Des	L IIQII	able I	or netr	• I W 5			
	PN	Length	Fall	Slope	Area	Houses	Base	k	HY	D DIA	
		(m)	(m)	(1:X)	(ha)	1	Flow (l/s	s) (mm) SEC	T (mm)	
	F1 005	51.000	0 379	134 5	0 000	0	0	.0 1.50	10	o 150	
	11.005	51.000	0.070	104.0	0.000	0	0.	.0 1.00	.0	0 100	
	F5.000	20.213	0.354	57.1	0.000	0	1.	1 1.50	0	o 150	
		33.863						0 1.50		o 150	
	r1.00/	14.493	0.108	134.3	0.000	0	υ.	.0 1.50	.0	o 150	
	F6.000	18.290	0.180	101.6	0.000	0	1.	.2 1.50	00	o 150	
		30.492				0		.0 1.50		0 150	
		82.306 22.280				0		.0 1.50 .0 1.50		o 150 o 150	
		92.960								o 150	
		67.689						6 1.50		o 150	
		27.735				0		1 1.50		o 150	
	F7.000	12.187	0.235	51.9	0.000	0	0.	.6 1.50	00	o 150	
	F8.000	10.834	0.072	150.0	0.000	0	0.	6 1.50	0	o 150	
	F7.001	54.610	0.409	133.6	0.000	0	0.	0 1.50	00	o 150	
				Matura			mala la				
				<u>Netwc</u>	<u>ik k</u> e	esults	ladie				
PN	us/I	L Σ Are	a Σ	Base	Σ Hse	Add Flo	w P.Dep	P.Vel	Vel	Cap	Flow
	(m)	(ha)	Flo	w (l/s)		(l/s)	(mm)	(m/s)	(m/s)	(1/s)	(l/s)
F1.(05 17.80	9 0.00	0	8.7	0	0.	0 88	0.80	0.75	13.3	8.7
11.0	100 17.00	0.00	0	0.7	0	••	0 00	0.00	0.70	10.0	0.7
F5.0	00 21.98	6 0.00	0	1.1	0	0.	0 24	0.61	1.16	20.5	1.1
	06 17.43			9.8				0.83	0.76	13.3	9.8
F1.0	10/ 1/.1/	7 0.00	0	9.8	0	0.	0 95	0.83	0.76	13.3	9.8
F6 (00 22.39	0 0.00	0	1.2	0	0.	0 29	0.51	0.87	15.4	1.2
r 0.0											
	08 17.07			11.0				0.84	0.76		11.0
F1.0		2 0.00		11.0				0.84	0.76		11.0
F1.0 F1.0	09 16.84			11.0				0.84	0.76		11.0
F1.0 F1.0 F1.0	09 16.84 10 16.22	9 0.00		11 0	0	Ο.		0.84	0.76		11.0
F1.0 F1.0 F1.0 F1.0	09 16.84 10 16.22 11 16.06	9 0.00 3 0.00	0	11.0		^		0.85	0.76	1 1 1	11.6
F1.0 F1.0 F1.0 F1.0 F1.0	09 16.84 10 16.22 11 16.06 12 15.37	9 0.00 3 0.00 1 0.00	0 0	11.6	0						
F1.0 F1.0 F1.0 F1.0 F1.0	09 16.84 10 16.22 11 16.06	9 0.00 3 0.00 1 0.00	0 0		0			0.85	0.76		11.7
F1.0 F1.0 F1.0 F1.0 F1.0 F1.0	09 16.84 10 16.22 11 16.06 12 15.37	9 0.00 3 0.00 1 0.00 7 0.00	0 0 0	11.6	0	0.	0 109				
F1.0 F1.0 F1.0 F1.0 F1.0 F1.0	09 16.84 10 16.22 11 16.06 12 15.37 13 14.86	9 0.00 3 0.00 1 0.00 7 0.00 1 0.00	0 0 0	11.6 11.7 0.6	0 0 0	0. 0.	0 109 0 17	0.85	0.76 1.22	13.3	11.7 0.6
F1.0 F1.0 F1.0 F1.0 F1.0 F1.0 F1.0	09 16.84 10 16.22 11 16.06 12 15.37 13 14.86	9 0.00 3 0.00 1 0.00 7 0.00	0 0 0	11.6 11.7	0 0 0	0. 0.	0 109 0 17	0.85	0.76	13.3	11.7
F1.0 F1.0 F1.0 F1.0 F1.0 F1.0 F7.0 F8.0	009 16.84 10 16.22 11 16.06 12 15.37 13 14.86	9 0.00 3 0.00 1 0.00 7 0.00 1 0.00 4 0.00	0 0 0 0	11.6 11.7 0.6	0 0 0	0. 0. 0.	0 109 0 17 0 22	0.85 0.52	0.76 1.22	13.3 21.5 12.6	11.7 0.6

JRS Infrastructu	ire & Ei						Page	3		
Scott House		No	orth W	est C	ambrid	ge				
Alencon Link		FC	UL NE	TWORK	1		∇	78/		
Basingstoke RG2	21 7PP								<u>STG</u>	
Date 20.11.12		De	signe	d by	I Phil	pott	D	PA	۲ ۲ ۲	ECT
File FW Net 1.mc	dx		lecked	-		=			- - Y	
Micro Drainage			twork	-	. 6					
					• •					
	Ne	tworl	k Desi	ign Ta	able fo	or netl	.fws			
PN	Length	Fall	Slope	Area	Houses	Base	k	ну	D DIA	
	(m)		(1:X)			Flow (1/	s) (m	n) SEC	T (mm))
										_
	112.410 24.137						.1 1.5		o 22!	
F1.015	24.137	0.104	232.0	0.000	0	0	.0 1.3	00	0 22.)
F9.000	84.427	1.200	70.4	0.000	0	31	.0 1.5	00	o 22	5
F9.001	84.427	1.297	65.1	0.000	0		.9 1.5		o 22	
F9.002	10.851	0.950	11.4	0.000	0	0	.0 1.5	00	o 225	5
	11.714						.0 1.5		o 22	
F9.004	15.384	1.504	10.2	0.000	0	0	.0 1.5	00	o 22	5
F1.016	21.053	0.063	334.2	0.000	0	0	.0 1.5	00	o 30(0
	58.665						.0 1.5		0 300	
F1.018	31.821	0.097	328.1	0.000	0	0	.0 1.5	00	o 300	0
F1.019	24.762	0.074	334.6	0.000	0	0	.0 1.5	00	o 300	0
F1.020	49.514	0.158	314.1	0.000	0	1	.8 1.5	00	o 300	0
F10 000	81.346	1,959	41.5	0.000	0	2	.6 1.5	00	o 150	n
	52.612							00		
										_
	48.177 44.301						.3 1.5 .0 1.5		o 37! o 37!	
		<u>1</u>	Netwoi	ck Rea	sults 1	<u>Table</u>				
PN US/I (m)	L Σ Area (ha)		Base (l/s)		Add Flor (l/s)	w P.Dep (mm)		Vel (m/s)	Cap (1/s)	
F1.014 14.5	85 0.000)	16.0	0	0.	0 117	0.76	0.75	29.9	16.0

F1.014	14.585	0.000	16.0	0	0.0	117	0.76	0.75	29.9	16.0
F1.015	14.102	0.000	16.0	0	0.0	117	0.76	0.75	29.9	16.0
F9.000	20.700	0.000	31.0	0	0.0	122	1.41	1.37	54.5	31.0
F9.001	19.500	0.000	36.9	0	0.0	132	1.52	1.42	56.6	36.9
F9.002	18.203	0.000	36.9	0	0.0	80	2.90	3.41	135.5	36.9
F9.003	17.253	0.000	36.9	0	0.0	82	2.82	3.28	130.4	36.9
F9.004	16.303	0.000	36.9	0	0.0	78	3.02	3.60	143.2	36.9
F1.016	13.923	0.000	52.9	0	0.0	244	0.86	0.76	53.5	52.9
F1.017	13.860	0.000	52.9	0	0.0	244	0.86	0.76	53.4	52.9
F1.018	13.685	0.000	52.9	0	0.0	241	0.87	0.76	54.0	52.9
F1.019	13.588	0.000	52.9	0	0.0	244	0.86	0.76	53.4	52.9
F1.020	13.514	0.000	54.7	0	0.0	244	0.89	0.78	55.2	54.7
F10.000	17.841	0.000	2.6	0	0.0	33	0.88	1.36	24.1	2.6
F10.001	15.882	0.000	4.4	0	0.0	59	0.68	0.75	13.3	4.4
F1.021	13.282	0.000	60.4	0	0.0	238	0.82	0.75	82.9	60.4
F1.022	13.176	0.000	60.4	0	0.0	238	0.82	0.75	82.9	60.4
		©1982	-2011 M	icro D	raina	ge Li	td			
						-				

URS Infrastructu	re & E	nviro	onment	UK I	Ltd		Page 4		
Scott House		No	orth W	lest (Cambrid	lge			
Alencon Link		FC	DUL NE	TWORE	K 1		$\int \sqrt{-\gamma}$		
Basingstoke RG2	1 7PP							<u>1</u> Si	JO (
Date 20.11.12		De	esigne	ed by	I Phi	lpott) D),	S	<u>íneror</u>
File FW Net 1.md	х	Cł	necked	l by				<u> </u>	
 Micro Drainage		Ne	etwork	w.12	2.6				
	N	etwor	k Des	ign T	able f	or net1.	fws		
PN	Length	Fall	Slope	Area	Houses	Base	k	HYD	DIA
	(m)	(m)	(1:X)	(ha)		Flow (l/s) (mm)	SECT	(mm)
F11.000	27.704	0.798	34.7	0 000	0	0	0 1.500		
			0.1.1	0.000	0	3.	0 1.500	0	150
F1.023	40.135	0.089			0		0 1.500		150 375
	40.135 42.932		453.1	0.000		0.		0	
	42.932	0.095	453.1 453.1	0.000	0	0.	0 1.500	0	375
F1.024	42.932 83.125	0.095	453.1 453.1 77.6	0.000 0.000 0.000	0	0. 0. 0.	0 1.500 0 1.500	0	375 375
F1.024 F12.000 F12.001 F12.002	42.932 83.125 22.367 26.322	0.095 1.071 0.167 0.196	453.1 453.1 77.6 134.2 134.2	0.000 0.000 0.000 0.000 0.000	0 0	0. 0. 0. 1.	0 1.500 0 1.500 4 1.500 0 1.500 7 1.500	0 0 0 0	375 375 150 150 150
F1.024 F12.000 F12.001 F12.002 F12.003	42.932 83.125 22.367 26.322 16.728	0.095 1.071 0.167 0.196 0.125	453.1 453.1 77.6 134.2 134.2 134.2	0.000 0.000 0.000 0.000 0.000 0.000	0 0 0	0. 0. 0. 1. 0.	0 1.500 0 1.500 4 1.500 0 1.500 7 1.500 0 1.500		375 375 150 150 150 150
F1.024 F12.000 F12.001 F12.002 F12.003 F12.004	42.932 83.125 22.367 26.322 16.728 10.308	0.095 1.071 0.167 0.196 0.125 0.077	453.1 453.1 77.6 134.2 134.2 134.2 134.2 134.2	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0 0 0 0 0	0. 0. 0. 1. 0.	0 1.500 0 1.500 4 1.500 0 1.500 7 1.500 0 1.500 2 1.500		375 375 150 150 150 150 150
F1.024 F12.000 F12.001 F12.002 F12.003	42.932 83.125 22.367 26.322 16.728 10.308 24.049	0.095 1.071 0.167 0.196 0.125 0.077 0.179	453.1 453.1 77.6 134.2 134.2 134.2 134.2 134.2 134.2	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0 0 0 0 0 0	0. 0. 0. 1. 0. 0. 0. 0.	0 1.500 0 1.500 4 1.500 0 1.500 7 1.500 0 1.500		375 375 150 150 150 150

0.0 1.500 o 150

0.2 1.500

1.2 1.500

0.3 1.500

0.6 1.500

o 150

o 150

o 150

o 150

Network Results Table

0

0

0

F13.00043.9640.56777.50.0000F13.00131.3250.234133.80.0000

F14.000 7.406 0.095 78.0 0.000

F15.000 8.826 0.114 77.4 0.000

F13.002 15.820 0.117 135.6 0.000

PN	US/IL (m)	Σ Area (ha)	Σ Base S Flow (l/s)	Σ Hse	Add Flow (1/s)	P.Dep (mm)		Vel (m/s)	Cap (1/s)	Flow (1/s)	
F11.000	16.116	0.000	3.0	0	0.0	34	0.98	1.49	26.3	3.0	
F1.023	13.078	0.000	63.4	0	0.0	246	0.83	0.75	82.9	63.4	
F1.024	12.989	0.000	63.4	0	0.0	246	0.83	0.75	82.9	63.4	
F12.000		0.000	0.4	0	0.0	16	0.40	0.99	17.6	0.4	
F12.001		0.000	0.4	0	0.0	18	0.33	0.76	13.3	0.4	
F12.002	20.497	0.000	2.1	0	0.0	40	0.55	0.76	13.3	2.1	
F12.003	20.301	0.000	2.1	0	0.0	40	0.55	0.76	13.3	2.1	
F12.004	20.177	0.000	2.3	0	0.0	42	0.56	0.76	13.3	2.3	
F12.005	20.100	0.000	2.5	0	0.0	44	0.58	0.76	13.3	2.5	
F12.006	19.921	0.000	6.5	0	0.0	74	0.75	0.76	13.3	6.5	
F13.000	21.864	0.000	0.6	0	0.0	19	0.45	1.00	17.6	0.6	
F13.001	21.297	0.000	0.8	0	0.0	25	0.41	0.76	13.4	0.8	
F14.000	21.932	0.000	1.2	0	0.0	27	0.56	0.99	17.5	1.2	
F15.000	21.914	0.000	0.3	0	0.0	14	0.36	1.00	17.6	0.3	
F13.002	21.063	0.000	2.3	0	0.0	42	0.56	0.75	13.3	2.3	
		0	01982-2011	Micr	o Drain	age I	utd				

URS Infrastructure & Env.	ironment UK Ltd	Page 5
Scott House	North West Cambridge	
Alencon Link	FOUL NETWORK 1	
Basingstoke RG21 7PP		LULICIO ON
Date 20.11.12	Designed by I Philpott	
File FW_Net_1.mdx	Checked by	
Micro Drainage	Network W.12.6	

Network Design Table for net1.fws

PN	Length (m)	Fall (m)	-			Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)
F16.000	7.377	0.095	77.7	0.000	0	0.5	1.500	0	150
F17.000	8.748	0.113	77.4	0.000	0	1.1	1.500	0	150
F13.003	23.881	0.177	135.2	0.000	0	0.0	1.500	0	150
F13.004	45.427	0.336	135.2	0.000	0	0.0	1.500	0	150
F13.005	38.359	1.050	36.5	0.000	0	0.0	1.500	0	150
F13.006	20.241	0.550	36.8	0.000	0	0.0	1.500	0	150
F12.007	98.896	2.222	44.5	0.000	0	0.0	1.500	0	150
F18.000	64.297	0.969	66.4	0.000	0	44.2	1.500	0	225
F12.008	53.099	0.572	92.8	0.000	0	1.2	1.500	0	300
F12.009	42.161	0.824	51.2	0.000	0	0.0	1.500	0	300
F12.010	24.415	0.322	75.8	0.000	0	4.2	1.500	0	300
F12.011	15.036	0.154	97.9	0.000	0	0.0	1.500	0	300
F19.000	48.912	0.820	59.6	0.000	0	0.7	1.500	0	150
F19.001	11.326	0.083	136.0	0.000	0	1.1	1.500	0	150
F20.000	57.534	0.741	77.6	0.000	0	1.2	1.500	0	150

Network Results Table

PN	US/IL (m)		Σ Base Flow (l/s)	Σ Hse	Add Flow (1/s)	-		Vel (m/s)	-		
F16.000	21.509	0.000	0.5	0	0.0	18	0.43	0.99	17.6	0.5	
F17.000	21.478	0.000	1.1	0	0.0	26	0.55	1.00	17.6	1.1	
F13.003	20.946	0.000	3.9	0	0.0	56	0.65	0.75	13.3	3.9	
F13.004	20.770	0.000	3.9	0	0.0	56	0.65	0.75	13.3	3.9	
F13.005	20.434	0.000	3.9	0	0.0	40	1.04	1.45	25.7	3.9	
F13.006	19.384	0.000	3.9	0	0.0	40	1.04	1.45	25.6	3.9	
F12.007	18.834	0.000	10.4	0	0.0	70	1.28	1.32	23.2	10.4	
F18.000	17.975	0.000	44.2	0	0.0	151	1.56	1.41	56.1	44.2	
F12.008	16.462	0.000	55.8	0	0.0	159	1.47	1.44	101.8	55.8	
F12.009	15.890	0.000	55.8	0	0.0	133	1.84	1.94	137.2	55.8	
F12.010	15.066	0.000	60.0	0	0.0	156	1.62	1.59	112.6	60.0	
F12.011	14.744	0.000	60.0	0	0.0	168	1.47	1.40	99.1	60.0	
F19.000	20.880	0.000	0.7	0	0.0	19	0.52	1.14	20.1	0.7	
F19.001	20.060	0.000	1.8	0	0.0	37	0.52	0.75	13.3	1.8	
F20.000	20.712	0.000	1.2	0	0.0	27	0.56	0.99	17.6	1.2	
		0	01982-2011	. Micı	ro Drain	lage I	Jtd				

RS Infrastr	uctu	re & Er						Page	6		
cott House						ambridge	е				
lencon Link	2		FC	UL NE	TWORK	1		Γ	780		
Basingstoke	RG2	1 7PP								حيرت	
Date 20.11.1	2		De	signe	d by I	I Philp	ott	1 D) DE	<u>JY</u>	ECC
File FW Net	1.md	х	Ch	lecked	by					I_	
 Micro Draina	-				W.12	. 6					
11010 214110	.90			0.0101							
		Ne	twor	k Des:	ign Ta	ble for	net1	.fws			
	PN	Length	Fall	Slope	Area		Base			YD DIA	
		(m)	(m)	(1:X)	(ha)	F.	low (1,	/s) (m	m) SE	CT (mm))
) [म	9 002	65.796	0 487	135 2	0 000	0	-	1.2 1.5	500	o 150	ſ
		46.202				0		0.6 1.5			
		131.272				0		3.6 1.5		o 150	
		44.617				0		0.0 1.5		o 300	
E'12	2.UI3	18.931	∪.148	121.8	0.000	0	(0.0 1.5	000	o 300	J
F21	1.000	154.686	4.500	34.4	0.000	0		3.6 1.5	500	o 150	0
F12	2.014	19.813	0.140	141.5	0.000	0	(0.0 1.5	500	o 300	C
		24.135				0		0.0 1.5		0 375	
F12	2.016	14.954	0.078	191.7	0.000	0	(0.0 1.5	500	o 375	5
Fl	1.025	61.034	0.109	559.9	0.000	0	2	2.3 1.5	500	o 525	5
F22	2.000	61.295	0.454	135.0	0.000	0	2	2.4 1.5	500	o 150	0
F22	2.001	12.061	0.089	135.0	0.000	0	(0.0 1.5	500	o 150	C
F22	2.002	70.011	0.519	135.0	0.000	0	2	2.0 1.5	500	o 150	C
		46.413				0		0.0 1.5		0 525	
Fl	1.02/	26.089				0		0.0 1.5	000	o 525	0
			<u>1</u>	Netwo	<u>rk Res</u>	<u>ults Ta</u>	<u>uble</u>				
PN	US/II (m)	LΣArea (ha)		Base (l/s)	Σ Hse	Add Flow (1/s)				Cap (1/s)	Flow (1/s)
	(,	()		(_/ 0/		(_/ _/	()	(,,	(,,	(_/ _/	(_, _,
F19.002	19.97	1 0.000	1	4.2	0	0.0	58	0.67	0.75	13.3	4.2
		4 0.000		4.8		0.0		1.04		23.4	
F19.004	18.43	4 0.000	1	8.4	0	0.0	58	1.34	1.52	26.9	8.4
F12 012	14 35	0 0.000	1	68.4	0	0.0	198	1.38	1 26	88.8	68.4
		4 0.000		68.4		0.0	201				
F21.000	18.62	2 0.000	I	3.6	0	0.0	38	1.04	1.50	26.5	3.6
F12.014	13.83	6 0.000	1	72.0	0	0.0	218	1.31	1.16	82.3	72.0
		1 0.000		72.0	0	0.0				114.4	
F12.016	13.52	0 0.000	1	72.0	0	0.0	202	1.19	1.16	127.8	72.0
	12.74	4 0.000	I	137.7	0	0.0	343	0.92	0.84	181.6	137.7
F1.025				2.4	0	0.0	43				
	10 01	1 0 000				0.0		0.57		13.3	
F22.000			1	24		0.0	-J	0.57	0.75		2.7
F22.000 F22.001	12.75	7 0.000		2.4 4.4		0.0	59	0.68	0.75	13.3	4.4
F22.000 F22.001	12.75			2.4 4.4		0.0	59	0.68	0.75	13.3	4.4
F22.000 F22.001 F22.002 F1.026	12.75 12.66 11.77	7 0.000	1		0	0.0	318	1.03	0.96	13.3 208.4 206.3	142.1

URS Infrastructure & Env	Page 7	
Scott House	North West Cambridge	
Alencon Link	FOUL NETWORK 1	
Basingstoke RG21 7PP		LUIGHO ON
Date 20.11.12	Designed by I Philpott	
File FW_Net_1.mdx	Checked by	
Micro Drainage	Network W.12.6	

Network Design Table for net1.fws

PN	Length	Fall	Slope	Area	Houses	Base	k	HYD	DIA
	(m)	(m)	(1:X)	(ha)		Flow (l/s)	(mm)	SECT	(mm)

F1.028 1.424 0.010 142.4 0.000 0 0.0 1.500 o 525

<u>Network Results Table</u>

PN	US/IL (m)		Σ Base Flow (l/s)		Add Flow (l/s)	-			-	
F1.028	11.605	0.000	142.1	0	0.0	229	1.57	1.67	361.3	142.1

URS Infrastructure & Env.	Page 8	
Scott House	North West Cambridge	
Alencon Link	FOUL NETWORK 1	
Basingstoke RG21 7PP		LUIGHO ON
Date 20.11.12	Designed by I Philpott	
File FW_Net_1.mdx	Checked by	
Micro Drainage	Network W.12.6	

<u>Upstream Manhole</u>

PN	-	Diam (mm)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F1.000 F1.001	0 0		F1 F2	22.700 23.550			Open Manhole Open Manhole	1050 1200
F2.000	0	150	F3	23.475	21.825	1.500	Open Manhole	1200
F1.002 F1.003	0	150 150	F4 F5	23.475 23.500			Open Manhole Open Manhole	1200 1200
F3.000	0	150	F6	23.839	22.189	1.500	Open Manhole	1050
F1.004	0	150	F7	23.563	18.188	5.225	Open Manhole	1200
F4.000	0	150	F8	23.887	22.237	1.500	Open Manhole	1200
F1.005	0	150	F9	23.522	17.809	5.563	Open Manhole	1200
F5.000	0	150	F10	23.636	21.986	1.500	Open Manhole	1050
F1.006 F1.007	0	150 150	F11 F12	23.282 23.734	17.430 17.177		Open Manhole Open Manhole	1200 1200

Downstream Manhole

	ength (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)		MH DIAM., L*W (mm)
F1.000 9	6.996	150.0	F2	23.550	20.403	2.997	Open Manhole	1200
F1.001 9	6.996	135.8	F4	23.475	19.689	3.636	Open Manhole	1200
F2.000 3	6.788	150.0	F4	23.475	21.580	1.745	Open Manhole	1200
F1.002 14	3.373	136.5	F5	23.500	18.639		Open Manhole	1200
F1.003 6	0.933	135.0	F7	23.563	18.188	5.225	Open Manhole	1200
F3.000 1	9.910	149.7	F7	23.563	22.056	1.357	Open Manhole	1200
F1.004 5	1.003	134.6	F9	23.522	17.809	5.563	Open Manhole	1200
F4.000 2	0.195	55.3	F9	23.522	21.872	1.500	Open Manhole	1200
F1.005 5	1.000	134.5	F11	23.282	17.430	5.702	Open Manhole	1200
F5.000 2	0.213	57.1	F11	23.282	21.632	1.500	Open Manhole	1200
F1.006 3							Open Manhole	
F1.007 1	4.493			23.860	17.070		Open Manhole	1200

URS Infrastructure & Env:	Page 9	
Scott House	North West Cambridge	
Alencon Link	FOUL NETWORK 1	
Basingstoke RG21 7PP		Li Gro
Date 20.11.12	Designed by I Philpott	
File FW_Net_1.mdx	Checked by	
Micro Drainage	Network W.12.6	

<u>Upstream Manhole</u>

PN	-	Diam (mm)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F6.000	0	150	F13	24.040	22.390	1.500	Open Manhole	1050
F1.008 F1.009	0	150 150	F14 F15	23.860 23.420	17.070 16.842		Open Manhole Open Manhole	1200 1200
F1.010 F1.011	0 0	150 150	F16 F17	22.790 22.911			Open Manhole Open Manhole	1200 1200
F1.012 F1.013	0 0	150 150	F18 F19	21.939 20.955	15.371 14.867		Open Manhole Open Manhole	1200 1200
F7.000	0	150	F20	20.901	19.251	1.500	Open Manhole	1050
F8.000	0	150	F21	20.574	18.924	1.500	Open Manhole	1200
F7.001	0	150	F22	20.666	18.852	1.664	Open Manhole	1200
F1.014 F1.015	0 0	225 225	F23 F24	20.710 18.555	14.585 14.102		Open Manhole Open Manhole	1200 1200
F9.000	0	225	F25	23.600	20.700	2.675	Open Manhole	1200

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)			
F6.000	18.290	101.6	F14	23.860	22.210	1.500	Open Manhole	1200			
	30.492			23.420			Open Manhole	1200			
	82.306			22.790	16.229		Open Manhole	1200			
	22.280 92.960			22.911 21.939			Open Manhole Open Manhole	1200 1200			
	67.689			20.955			Open Manhole	1200			
	27.735						Open Manhole	1200			
F7.000	12.187	51.9	F22	20.666	19.016	1.500	Open Manhole	1200			
F8.000	10.834	150.0	F22	20.666	18.852	1.664	Open Manhole	1200			
F7.001	54.610	133.6	F23	20.710	18.443	2.117	Open Manhole	1200			
F1.014	112.410	232.6	F24	18.555	14.102	4.228	Open Manhole	1200			
F1.015	24.137	232.6	F30	18.236	13.998	4.013	Open Manhole	1200			
F9.000	84.427	70.4	F26	22.344	19.500	2.619	Open Manhole	1200			
	©1982-2011 Micro Drainage Ltd										

URS Infrastructure & Env:	Page 10	
Scott House	North West Cambridge	
Alencon Link	FOUL NETWORK 1	Maro -
Basingstoke RG21 7PP		There is a
Date 20.11.12	Designed by I Philpott	
File FW_Net_1.mdx	Checked by	
Micro Drainage	Network W.12.6	

<u>Upstream Manhole</u>

PN	-	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F9.001	0	225	F26	22.344	19.500	2.619	Open Manhole	1200
F9.002	0	225	F27	19.778	18.203	1.350	Open Manhole	1050
F9.003	0	225	F28	19.294	17.253	1.816	Open Manhole	1200
F9.004	0	225	F29	18.792	16.303	2.264	Open Manhole	1200
F1.016	0	300	F30	18.236	13.923	4.013	Open Manhole	1200
F1.017	0	300	F31	17.922	13.860	3.762	Open Manhole	1200
F1.018	0	300	F32	17.234	13.685	3.249	Open Manhole	1200
F1.019	0	300	F33	16.713	13.588	2.825	Open Manhole	1200
F1.020	0	300	F34	16.993	13.514	3.179	Open Manhole	1200
F10.000	0	150	F35	19.491	17.841	1.500	Open Manhole	1050
F10.001	0	150	F36	17.532	15.882	1.500	Open Manhole	1050
F1.021	0	375	F37	17.539	13.282	3.882	Open Manhole	1350
F1.022	0	375	F38	17.536	13.176	3.985	Open Manhole	1350
F11.000	0	150	F39	17.766	16.116	1.500	Open Manhole	1050
F1.023	0	375	F40	16.968	13.078	3.515	Open Manhole	1350

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)		
F9.001	84.427	65.1	F27	19.778	18.203	1.350	Open Manhole	1050		
F9.002	10.851	11.4	F28	19.294	17.253	1.816	Open Manhole	1200		
F9.003	11.714	12.3	F29	18.792	16.303	2.264	Open Manhole	1200		
F9.004	15.384	10.2	F30	18.236	14.799	3.212	Open Manhole	1200		
F1.016	21.053	334.2	F31	17.922	13.860	3.762	Open Manhole	1200		
F1.017	58.665	335.2	F32	17.234	13.685	3.249	Open Manhole	1200		
F1.018	31.821	328.1	F33	16.713	13.588	2.825	Open Manhole	1200		
F1.019	24.762	334.6	F34	16.993	13.514	3.179	Open Manhole	1200		
F1.020	49.514	314.1	F37	17.539	13.357	3.882	Open Manhole	1350		
F10.000	81.346	41.5	F36	17.532	15.882	1.500	Open Manhole	1050		
F10.001	52.612	135.0	F37	17.539	15.492	1.897	Open Manhole	1350		
F1.021	48.177	453.1	F38	17.536	13.176	3.985	Open Manhole	1350		
F1.022	44.301	453.1	F40	16.968	13.078	3.515	Open Manhole	1350		
F11.000	27.704	34.7	F40	16.968	15.318	1.500	Open Manhole	1350		
F1.023	40.135	453.1	F41	16.454	12.989	3.089	Open Manhole	1350		
	ellog 2011 Misse Dusiness Itd									
	©1982-2011 Micro Drainage Ltd									

URS Infrastructure & Env:	Page 11	
Scott House	North West Cambridge	
Alencon Link	FOUL NETWORK 1	
Basingstoke RG21 7PP		Trincho
Date 20.11.12	Designed by I Philpott	
File FW_Net_1.mdx	Checked by	
Micro Drainage	Network W.12.6	

<u>Upstream Manhole</u>

PN	Hyd Sect	Diam (mm)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F1.024	0	375	F41	16.454	12.989	3.089	Open Manhole	1350
F12.000	0	150	F42	23.385	21.735	1.500	Open Manhole	1200
F12.001	0	150	F43	22.498	20.664	1.684	Open Manhole	1200
F12.002	0	150	F44	22.635	20.497	1.988	Open Manhole	1200
F12.003	0	150	F45	22.811	20.301	2.360	Open Manhole	1200
F12.004	0	150	F46	22.525	20.177	2.198	Open Manhole	1200
F12.005	0	150	F47	22.516	20.100	2.266	Open Manhole	1200
F12.006	0	150	F48	22.014	19.921	1.943	Open Manhole	1200
F13.000	0	150	F49	23.514	21.864	1.500	Open Manhole	1050
F13.001	0	150	F50	23.616	21.297	2.169	Open Manhole	1200
F14.000	0	150	F51	23.582	21.932	1.500	Open Manhole	1200
F15.000	0	150	F52	23.564	21.914	1.500	Open Manhole	1050
F13.002	0	150	F53	23.489	21.063	2.276	Open Manhole	1200
F16.000	0	150	F54	23.159	21.509	1.500	Open Manhole	1050

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F1.024	42.932	453.1	F78	16.025	12.894	2.756	Open Manhole	1500
F12.000	83.125	77.6	F43	22.498	20.664	1.684	Open Manhole	1200
F12.001	22.367	134.2	F44	22.635	20.497		Open Manhole	1200
F12.002	26.322	134.2	F45	22.811	20.301		Open Manhole	1200
F12.003	16.728	134.2	F46	22.525	20.177	2.198	Open Manhole	1200
F12.004	10.308	134.2	F47	22.516	20.100	2.266	Open Manhole	1200
F12.005	24.049	134.2	F48	22.014	19.921	1.943	Open Manhole	1200
F12.006	82.914	134.2	F60	21.134	19.303	1.681	Open Manhole	1200
F13.000	43.964	77.5	F50	23.616	21.297	2.169	Open Manhole	1200
F13.001	31.325	133.8	F53	23.489	21.063	2.276	Open Manhole	1200
F14.000	7.406	78.0	F53	23.489	21.837	1.502	Open Manhole	1200
F15.000	8.826	77.4	F53	23.489	21.800	1.539	Open Manhole	1200
-10.000	4 5 0 0 0	105 0		~~ ~~~	~ ~ ~ ~ ~			1000
F13.002	15.820	135.0	F56	23.088	20.946	1.992	Open Manhole	1200
F16.000	7.377	77.7	F56	23.088	21.414	1 5 2 4	Open Manhole	1200
F10.000	1.311	//./	r J O	23.000	21.414	1.324	open mannore	1200
		(D1982	2-2011	Micro I	Drainag	e Ltd	

URS Infrastructure & Env:	Page 12	
Scott House	North West Cambridge	
Alencon Link	FOUL NETWORK 1	Micro
Basingstoke RG21 7PP		LULICICO OM
Date 20.11.12	Designed by I Philpott	
File FW_Net_1.mdx	Checked by	
Micro Drainage	Network W.12.6	

<u>Upstream Manhole</u>

PN	Hyd Sect	Diam (mm)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F17.000	0	150	F55	23.128	21.478	1.500	Open Manhole	1050
F13.003	0	150	F56	23.088	20.946		Open Manhole	1200
F13.004	0	150	F57	22.498	20.770	1.579	Open Manhole	1200
F13.005	0	150	F58	22.122	20.434	1.538	Open Manhole	1200
F13.006	0	150	F59	21.490	19.384	1.956	Open Manhole	1200
F12.007	0	150	F60	21.134	18.834	2.150	Open Manhole	1200
F18.000	0	225	F61	19.700	17.975	1 500	Open Manhole	1050
110.000	0	220	TOT	19.700	11.913	1.000	open namore	1000
F12.008	0	300	F62	18.731	16.462	1 969	Open Manhole	1200
F12.009	-	300	F63				-	
	0			18.158	15.890		Open Manhole	1200
F12.010	0	300	F64	17.334	15.066	1.968	Open Manhole	1200
F12.011	0	300	F65	17.012	14.744	1.968	Open Manhole	1200
F19.000	0	150	F66	22.530	20.880	1.500	Open Manhole	1200
F19.001	0	150	F67	21.710	20.060	1.500	Open Manhole	1200
							- · · · · · · · · · · · · · · · · · · ·	

Downstream Manhole

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F17.000	8.748	77.4	F56	23.088	21.365	1.573	Open Manhole	1200
F13.003 F13.004				22.498 22.122	20.770 20.434		Open Manhole Open Manhole	
F13.005 F13.006				21.490 21.134			Open Manhole Open Manhole	1200 1200
F12.007	98.896	44.5	F62	18.731	16.612	1.969	Open Manhole	1200
F18.000	64.297	66.4	F62	18.731	17.006	1.500	Open Manhole	1200
F12.008 F12.009				18.158 17.334	15.890 15.066		Open Manhole Open Manhole	
F12.010 F12.011				17.012 16.858	14.744 14.590		Open Manhole Open Manhole	1200 1200
F19.000 F19.001				21.710	20.060 19.977		Open Manhole Open Manhole	1200 1200
F19.001	11.320	10.0	r 09	21./4/	19.977	1.020	open Mannore	1200

URS Infrastructure & Env	Page 13	
Scott House	North West Cambridge	
Alencon Link	FOUL NETWORK 1	
Basingstoke RG21 7PP		LULICICO OM
Date 20.11.12	Designed by I Philpott	
File FW_Net_1.mdx	Checked by	
Micro Drainage	Network W.12.6	

<u>Upstream Manhole</u>

PN	-	Diam (mm)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F20.000	0	150	F68	22.362	20.712	1.500	Open Manhole	1050
F19.002	0	150	F69	21.747	19.971	1.626	Open Manhole	1200
F19.003	0	150	F70	21.348	19.484	1.714	Open Manhole	1200
F19.004	0	150	F71	21.116	18.434	2.532	Open Manhole	1200
F12.012	0	300	F72	16.858	14.350	2.208	Open Manhole	1200
F12.013	0	300	F73	16.492	13.984	2.208	Open Manhole	1200
F21.000	0	150	F74	20.272	18.622	1.500	Open Manhole	1050
F12.014	0	300	F75	16.344	13.836	2.208	Open Manhole	1200
F12.015	0	375	F76	16.204	13.621	2.208	Open Manhole	1350
F12.016	0	375	F77	16.103	13.520	2.208	Open Manhole	1350
F1.025	0	525	F78	16.025	12.744	2.756	Open Manhole	1500
F22.000	0	150	F79	14.861	13.211	1.500	Open Manhole	1200
F22.001	0	150	F80	15.222	12.757		Open Manhole	1200
F22.002	0	150	F81	15.230	12.668		Open Manhole	1200

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F20.000	57.534	77.6	F69	21.747	19.971	1.626	Open Manhole	1200
F19.002	65.796	135.2	F70	21.348	19.484	1.714	Open Manhole	1200
F19.003	46.202	44.0	F71	21.116	18.434		Open Manhole	1200
F19.004	131.272	33.4	F72	16.858	14.500		Open Manhole	1200
F12.012	44.617	121.8	F73	16.492	13.984	2.208	Open Manhole	1200
F12.013	18.931	127.8	F75	16.344	13.836	2.208	Open Manhole	1200
F21.000	154.686	34.4	F75	16.344	14.122	2.072	Open Manhole	1200
F12.014	19.813	141.5	F76	16.204	13.696	2.208	Open Manhole	1350
F12.015	24.135	239.0	F77	16.103	13.520	2.208	Open Manhole	1350
F12.016	14.954	191.7	F78	16.025	13.442		Open Manhole	1500
F1.025	61.034	559.9	F82	15.271	12.635	2.111	Open Manhole	1500
F22.000	61.295	135.0	F80	15.222	12.757	2.315	Open Manhole	1200
F22.001	12.061	135.0	F81	15.230	12.668	2.412	Open Manhole	1200
F22.002	70.011	135.0	F82	15.271	12.149		Open Manhole	
		C	01982	-2011 1	Micro D	rainage	e Ltd	

URS Infrastructure & Env.	Page 14	
Scott House	North West Cambridge	
Alencon Link	FOUL NETWORK 1	
Basingstoke RG21 7PP		LULICIO ON
Date 20.11.12	Designed by I Philpott	
File FW_Net_1.mdx	Checked by	
Micro Drainage	Network W.12.6	

<u>Upstream Manhole</u>

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
F1.026	0	525	F82	15.271	11.774	2.972	Open Manhole	1500
F1.027	0	525	F83	15.500	11.665	3.310	Open Manhole	1500
F1.028	0	525	F84	15.500	11.605	3.370	Open Manhole	1500

Downstream Manhole

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F1.027	26.089	434.8	F84	15.500	11.605	3.370	Open Manhole Open Manhole Open Manhole	1500 1500 0

URS Infrastructure & Env	Page 1	
Scott House	North West Cambridge	
Alencon Link	Foul Network 2	
Basingstoke RG21 7PP		LULICHO ON
Date 20.11.12	Designed by I Philpott	
File FW_Net_2_OP3.mdx	Checked by	
Micro Drainage	Network W.12.6	

FOUL SEWERAGE DESIGN

Design Criteria for FW NET 2 OP3.fws

Pipe Sizes STANDARD Manhole Sizes STANDARD

Industrial Flow (1/s/ha)0.00Add Flow / Climate Change (%)0Industrial Peak Flow Factor0.00Minimum Backdrop Height (m)0.000Flow Per Person (1/per/day)0.00Maximum Backdrop Height (m)0.000Persons per House0.00Min Design Depth for Optimisation (m)1.350Domestic (1/s/ha)0.00Min Vel for Auto Design only (m/s)0.75Domestic Peak Flow Factor0.00Min Slope for Optimisation (1:X)500

Designed with Level Soffits

Network Design Table for FW NET 2 OP3.fws

PN	Length (m)	Fall (m)	Slope (1:X)		Houses	lse (l/s)	k (mm)	HYD SECT	DIA (mm)	
F1.00 F1.00	0 150.000 1 61.590				0 0		1.500 1.500	0 0	<mark>150</mark> 150	
F2.00 F2.00 F2.00 F2.00	1 15.876	0.106	150.0 150.0	0.000	0 0 0	0.0	1.500 1.500 1.500 1.500	0 0 0	<mark>150</mark> 150 150 150	
F2.00 F3.00					0		1.500 1.500	0	150 150	
F2.00	5 101.481	0.677	150.0	0.000	0	0.4	1.500	0	150	

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)	Σ Hse	Add Flow (1/s)	-		Vel (m/s)	Cap (1/s)	Flow (1/s)	
	23.142		0.9	0	0.0	25	0.46	0.86	15.1	0.9	
F1.001	21.710	0.000	1.1	0	0.0	25	0.58	1.08	19.1	1.1	
F2.000	23.165	0.000	1.0	0	0.0	23	0.59	1.16	20.5	1.0	
F2.001	21.657	0.000	1.0	0	0.0	29	0.42	0.71	12.6	1.0	
F2.002	21.551	0.000	1.5	0	0.0	35	0.48	0.71	12.6	1.5	
F2.003	21.450	0.000	2.5	0	0.0	45	0.55	0.71	12.6	2.5	
F2.004	20.776	0.000	4.0	0	0.0	58	0.63	0.71	12.6	4.0	
F3.000	22.434	0.000	0.8	0	0.0	26	0.39	0.71	12.6	0.8	
F2.005	20.594	0.000	5.2	0	0.0	67	0.68	0.71	12.6	5.2	
		(©1982-201	1 Mic	ro Drain	nage :	Ltd				

URS Infrastructure & Env	Page 2	
Scott House	North West Cambridge	
Alencon Link	Foul Network 2	
Basingstoke RG21 7PP		LULICIO VI
Date 20.11.12	Designed by I Philpott	
File FW_Net_2_OP3.mdx	Checked by	
Micro Drainage	Network W.12.6	

Network Design Table for FW_NET_2_OP3.fws

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Houses	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)
F1.002	50.883	0.339	150.0	0.000	0	0.2	1.500	0	150
F4.000	149.826	2.074	72.2	0.000	0	1.9	1.500	0	150
F5.000	38.165	0.254	150.0	0.000	0	0.3	1.500	0	150
F6.000	42.377	0.283	150.0	0.000	0	0.6	1.500	0	150
F7.000	54.199	0.361	150.0	0.000	0	2.0	1.500	0	150
F5.001 F5.002					0 0		1.500 1.500	0 0	150 150
F8.000	52.792	0.579	91.2	0.000	0	2.3	1.500	0	150
F5.003	120.045	1.181	101.6	0.000	0	1.3	1.500	0	150
F4.001	57.873	0.678	85.3	0.000	0	0.2	1.500	0	150
F1.003	14.080	0.094	150.0	0.000	0	0.0	1.500	0	225
F9.000	71.962	0.562	128.0	0.000	0	0.4	1.500	0	150

<u>Network Results Table</u>

PN	US/IL (m)		Σ Base Flow (l/s)		Add Flow (1/s)	-	P.Vel (m/s)		Cap (1/s)	Flow (1/s)	
F1.002	19.918	0.000	6.5	0	0.0	76	0.72	0.71	12.6	6.5	
F4.000	23.269	0.000	1.9	0	0.0	33	0.66	1.03	18.2	1.9	
F5.000	24.200	0.000	0.3	0	0.0	16	0.29	0.71	12.6	0.3	
F6.000	23.722	0.000	0.6	0	0.0	22	0.36	0.71	12.6	0.6	
F7.000	24.189	0.000	2.0	0	0.0	41	0.52	0.71	12.6	2.0	
	23.439 22.908		3.3 4.1	0 0	0.0	52 59	0.60 0.64	0.71 0.71		3.3 4.1	
F8.000	23.081	0.000	2.3	0	0.0	38	0.65	0.92	16.2	2.3	
F5.003	22.376	0.000	7.7	0	0.0	75	0.87	0.87	15.4	7.7	
F4.001	21.195	0.000	9.8	0	0.0	82	0.99	0.95	16.8	9.8	
F1.003	19.504	0.000	16.3	0	0.0	104	0.90	0.94	37.2	16.3	
F9.000	21.669		0.4	-	0.0	-	0.33	0.77	13.7	0.4	
		(©1982-201	1 Mic	ro Drain	nage	Ltd				

JRS Infrastru	lctu	re & Er						Page	3			
Scott House			No	North West Cambridge								
Alencon Link			Fo	ul Ne	twork	2		Γ	78/	75	20	
Basingstoke	RG2	1 7PP								22	50	
Date 20.11.12			De	signe	d by	I Philp	ott	D ()PE	\mathbf{T}	LO,	80
File FW Net 2	OP	3.mdx	Ch	ecked	by							
 Micro Drainag	re I		Ne	twork	W.12	.6						
		<u>Networ</u>	k Des	sign 1	Table	for FW_	NET_2	_OP3	.fws			
				_								
PI	N	-		_		Houses	Base			IYD	DIA	
		(m)	(m)	(1:X)	(ha)	F.	low (1/	s) (m	m) SI	ECT	(mm)	
F9.	001	135.082	1.184	114.1	0.000	0	1	.6 1.	500	0	150	
F9.	002	73.548	0.490	150.0	0.000	0	1	.4 1.	500	0	150	
						-						
		105.969 105.969				0		2.0 1.			150	
FIU.	UUT	T03.909	1.001	T00.8	0.000	U	2	2.0 1.	500	0	150	
F9.	003	73.358	0.419	175.1	0.000	0	0	.4 1.	500	0	150	
		29.287						.0 1.			150	
		109.170						.5 1.		0		
F11.	002	132.017	1.146	115.2	0.000	0	1	.6 1.	500	0	150	
F9.	004	75.731	0.255	296.9	0.000	0	1	.7 1.	500	0	225	
F1.	004	13.286	0.052	257.7	0.000	0	0	0.0 1.	500	0	300	
			r	Vioturo	ch Dor	sults Ta	hlo					
			<u>1</u>	Netwoi	LK NES	SUILS IC	<u>adte</u>					
PN U	us/II	L Σ Area				Add Flow	P.Dep	P.Vel	Vel	с	ap	Flow
	(m)	(ha)	Flow	(1/s)		(1/s)	(mm)	(m/s)	(m/s)) (1	/s)	(l/s)
F9.001 2	1.10	7 0.000		2.0	0	0.0	38	0.57	0.83	2 1	4.5	2.0
F9.002 1				3.4	0	0.0		0.61			2.6	
F10.000 2				2.0	0	0.0		0.66			7.8	2.0
F10.001 2	0.70	0 0.000		4.0	0	0.0	52	0.73	0.8	7 1	5.4	4.0
F9.003 1	a no	3 0.000		7.8	0	0.0	90	0.71	0.60	Հ 1	1.7	7.8
r9.003 I	2.43	0.000		1.0	U	0.0	90	0.11	0.01	J	±•/	1.0
F11.000 <mark>2</mark>	3.57	6 0.000		4.0	0	0.0	44	0.92	1.19	92	1.1	4.0
F11.001 2	3.03	4 0.000		4.5	0	0.0	48	0.92	1.1	52	0.3	4.5
F11.002 2	1.16	2 0.000		6.1	0	0.0	68	0.78	0.82	2 1	4.4	6.1
	0 00	0 0 000		15 6	~	0.0	104	0 00	0.0			15 0
F9.004 1	8.93	9 0.000		15.6	0	0.0	124	0.69	0.60	o 2	6.4	15.6
F1.004 1	8.60	9 0.000		31.9	0	0.0	154	0.87	0.8	66	0.9	31.9
				01.0	0	0.0	- U I	0.07	0.01	- 0		01.0

URS Infrastructure & Env	Page 4	
Scott House	North West Cambridge	
Alencon Link	Foul Network 2	
Basingstoke RG21 7PP		LULICHO ON
Date 20.11.12	Designed by I Philpott	
File FW_Net_2_OP3.mdx	Checked by	
Micro Drainage	Network W.12.6	

<u>Upstream Manhole</u>

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F1.000	0	150	F1	24.642	23.142	1.350	Open Manhole	1050
F1.001	0	150	F2	23.210	21.710	1.350	Open Manhole	1050
F2.000	0	150	F3	24.665	23.165	1.350	Open Manhole	1050
F2.001	0	150	F4	23.157	21.657	1.350	Open Manhole	1050
F2.002	0	150	F5	23.087	21.551	1.386	Open Manhole	1050
F2.003	0	150	F6	22.989	21.450	1.389	Open Manhole	1050
F2.004	0	150	F7	23.722	20.776	2.796	Open Manhole	1200
F3.000	0	150	F8	23.934	22.434	1.350	Open Manhole	1050
F2.005	0	150	F9	23.597	20.594	2.852	Open Manhole	1200
F1.002	0	150	F10	22.272	19.918	2.204	Open Manhole	1200
F4.000	0	150	F11	24.769	23.269	1.350	Open Manhole	1050
F5.000	0	150	F12	25.700	24.200	1.350	Open Manhole	1050
F6.000	0	150	F13	25.222	23.722	1.350	Open Manhole	1050

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)		MH DIAM., L*W (mm)	
F1.000	150.000	104.7	F2	23.210	21.710	1.350	Open Manhole	1050	
F1.001	61.590	65.7	F10	22.272	20.772	1.350	Open Manhole	1200	
F2.000	86.279	57.2	F4	23.157	21.657	1.350	Open Manhole	1050	
F2.001	15.876	150.0	F5	23.087	21.551	1.386	Open Manhole	1050	
F2.002	15.151	150.0	F6	22.989	21.450	1.389	Open Manhole	1050	
F2.003	101.179	150.0	F7	23.722	20.776	2.796	Open Manhole	1200	
F2.004	27.204	150.0	F9	23.597	20.594		Open Manhole		
F3.000	68.608	150.0	F9	23.597	21.977	1.470	Open Manhole	1200	
F2.005	101.481	150.0	F10	22.272	19.918	2.204	Open Manhole	1200	
F1.002	50.883	150.0	F20	22.017	19.579	2.288	Open Manhole	1200	
F4.000	149.826	72.2	F19	22.695	21.195	1.350	Open Manhole	1050	
F5.000	38.165	150.0	F15	25.456	23.946	1.360	Open Manhole	1200	
F6.000	42.377	150.0	F15	25.456	23.439	1.866	Open Manhole	1200	
©1982-2011 Micro Drainage Ltd									

URS Infrastructure & Env	Page 5	
Scott House	North West Cambridge	
Alencon Link	Foul Network 2	
Basingstoke RG21 7PP		Tricko
Date 20.11.12	Designed by I Philpott	
File FW_Net_2_OP3.mdx	Checked by	
Micro Drainage	Network W.12.6	

<u>Upstream Manhole</u>

PN	-	Diam (mm)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F7.000	0	150	F14	25.689	24.189	1.350	Open Manhole	1050
F5.001 F5.002	0	150 150	F15 F16	25.456 24.707			Open Manhole Open Manhole	1200 1200
F8.000	0	150	F17	24.581	23.081	1.350	Open Manhole	1050
F5.003	0	150	F18	24.002	22.376	1.476	Open Manhole	1050
F4.001	0	150	F19	22.695	21.195	1.350	Open Manhole	1050
F1.003	0	225	F20	22.017	19.504	2.288	Open Manhole	1200
F9.000 F9.001 F9.002	0 0 0		F21 F22 F23	23.169 22.607 21.423		1.350	Open Manhole Open Manhole Open Manhole	1050 1050 1050
F10.000 F10.001	0	<mark>150</mark> 150	F24 F25	23.594 22.200	22.094 20.700		Open Manhole Open Manhole	1050 1050

Downstream Manhole

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F7.000	54.199	150.0	F15	25.456	23.828	1.478	Open Manhole	1200
F5.001 F5.002	79.743 79.755			24.707 24.002			Open Manhole Open Manhole	
F8.000	52.792	91.2	F18	24.002	22.502	1.350	Open Manhole	1050
F5.003	120.045	101.6	F19	22.695	21.195	1.350	Open Manhole	1050
F4.001	57.873	85.3	F20	22.017	20.517	1.350	Open Manhole	1200
F1.003	14.080	150.0	F31	21.915	19.410	2.280	Open Manhole	1200
F9.000	71.962	128.0	F22	22.607	21.107	1.350	Open Manhole	1050
F9.001	135.082	114.1	F23	21.423	19.923		Open Manhole	
F9.002	73.548	150.0	F26	21.149	19.433	1.566	Open Manhole	1200
F10.000	105.969	76.0	F25	22.200	20.700	1.350	Open Manhole	1050
F10.001	105.969	100.8	F26	21.149	19.649		Open Manhole	
			1000					

URS Infrastructure & Env	ironment UK Ltd	Page 6
Scott House	North West Cambridge	
Alencon Link	Foul Network 2	
Basingstoke RG21 7PP		Tricko
Date 20.11.12	Designed by I Philpott	
File FW_Net_2_OP3.mdx	Checked by	
Micro Drainage	Network W.12.6	

<u>Upstream Manhole</u>

PN	-	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F9.003	0	150	F26	21.149	19.433	1.566	Open Manhole	1200
F11.000 F11.001 F11.002	0 0 0	<mark>150</mark> 150 150	F27 F28 F29	25.026 24.483 22.662	23.576 23.034 21.162	1.299	Open Manhole Open Manhole Open Manhole	1050 1050 1050
F9.004	0	225	F30	21.517	18.939		Open Manhole	1200
F1.004	0	300	F31	21.915	18.609	3.006	Open Manhole	1200

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F9.003	73.358	175.1	F30	21.517	19.014	2.353	Open Manhole	1200
F11.001	29.287 109.170 132.017	58.3	F29	24.483 22.662 21.517		1.350	Open Manhole Open Manhole Open Manhole	
F9.004	75.731	296.9	F31	21.915	18.684	3.006	Open Manhole	1200
F1.004	13.286	257.7	F32	22.035	18.557	3.178	Open Manhole	1200

URS Infrastructure & Env	ironment UK Ltd	Page 1
Scott House	North West Cambridge	
Alencon Link	Foul Network 3	
Basingstoke RG21 7PP		LULICIO V
Date 20.11.12	Designed by 24321ip	
File FW_Net_3.mdx	Checked by	
Micro Drainage	Network W.12.6	

FOUL SEWERAGE DESIGN

Design Criteria for FW_NET_3.fws

Pipe Sizes STANDARD Manhole Sizes STANDARD

Industrial Flow (l/s/ha) 0.00 Add Flow / Climate Change (%) 0 Industrial Peak Flow Factor 0.00 Minimum Backdrop Height (m) 0.000 Flow Per Person (l/per/day) 0.00 Maximum Backdrop Height (m) 0.000 Persons per House 0.00 Min Design Depth for Optimisation (m) 1.500 Domestic (l/s/ha) 0.00 Min Vel for Auto Design only (m/s) 0.75 Domestic Peak Flow Factor 0.00 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Network Design Table for FW NET 3.fws

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Houses	ise (1/s)	k (mm)	HYD SECT	DIA (mm)
F1.000	56.463	0.376	150.2	0.000	0	0.8	1.500	0	150
F1.001	63.724	0.425	149.9	0.000	0		1.500	0	150
F1.002	65.618	0.437	150.2	0.000	0	0.0	1.500	0	150
F1.003	18.728	0.125	150.0	0.000	0	0.5	1.500	0	150
F1.004	38.885	0.259	150.1	0.000	0	0.0	1.500	0	150
F1.005	66.093	0.441	149.9	0.000	0	0.4	1.500	0	150
F1.006	16.128	0.108	149.3	0.000	0	0.0	1.500	0	150
F2.000	25.722	0.623	41.3	0.000	0	0.2	1.500	0	150
F2.001	30.238	0.559	54.1	0.000	0	0.0	1.500	0	150
F1.007	28.987	0.193	150.2	0.000	0	0.0	1.500	0	150

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)	Σ Hse	Add Flow (1/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)	
F1.000	12.045	0.000	0.8	0	0.0	26	0.39	0.71	12.6	0.8	
F1.001	11.669	0.000	1.4	0	0.0	34	0.47	0.71	12.6	1.4	
F1.002	11.244	0.000	1.4	0	0.0	34	0.47	0.71	12.6	1.4	
F1.003	10.807	0.000	1.9	0	0.0	39	0.51	0.71	12.6	1.9	
F1.004	10.682	0.000	1.9	0	0.0	39	0.51	0.71	12.6	1.9	
F1.005	10.423	0.000	2.3	0	0.0	44	0.54	0.71	12.6	2.3	
F1.006	9.982	0.000	2.3	0	0.0	43	0.54	0.72	12.6	2.3	
F2.000	12.419	0.000	0.2	0	0.0	10	0.39	1.37	24.1	0.2	
F2.001	11.796	0.000	0.2	0	0.0	11	0.36	1.19	21.1	0.2	
F1.007	9.874	0.000	2.5	0	0.0	45	0.55	0.71	12.6	2.5	
			©1982-201	1 Mic	ro Drain	nage i	Ltd				

JRS Infrastruc	ture & H	Envir	onment	UK I	Ltd		Page	2		
Scott House		N	orth V	Vest (Cambridg	le				
lencon Link		F	oul Ne	etwor]	x 3		5	78		\sim
Basingstoke R	G21 7PP								حيره	リ
Date 20.11.12		D	esigne	ed by	24321ip)	1 D) PE		E
Tile FW Net 3.	mdx	C	hecked	d by						كك
 Micro Drainage			etworl		2.6					
				-						
	Net	work	Desig	n Tab	le for :	FW_NEI	<u>3.</u> f	WS		
PN	Iongth	F-11	<u>81</u> 000	1.000	Houses	Base	,	с ну	D DIA	
PN	(m)	(m)	-	(ha)		low (1/			CT (mm)	
	0 53.827						.2 1.5		o 150	
	1 55.842						.2 1.5		0 150	
	2 106.364						.0 1.5		0 150	
	3 87.547				0		.9 1.5		0 150	
F3.00	4 49.560	0.330	130.2	0.000	U	0	.9 1.5	000	o 150	,
F4.00	0 54.726	1.471	37.2	0.000	0	0	.0 1.5	500	o 150)
F3.00	5 108.253	0.722	149.9	0.000	0	0	.0 1.5	500	o 150)
F5.00	0 22.656	0.297	76.3	0.000	0	1	.1 1.5	500	o 150)
	6 111.554				0		.0 1.5		0 150	
£3.00	7 38.229	0.255	149.9	0.000	0	T	.7 1.5	500	o 150	J
F6.00	0 32.665	0.218	150.0	0.000	0	1	.7 1.5	500	o 150)
F3.00	8 37.254	0.248	150.2	0.000	0	0	.0 1.5	500	o 150)
F3.00	9 9.904	0.066	150.1	0.000	0	0	.0 1.5	500	o 150)
F7.00	0 69.699	0.465	150.0	0.000	0	0	.6 1.5	500	o 150)
	1 16.250						.3 1.		o 150	
			Netwo	rk Re	sults T	ahle				
			1100000	<u>1 M 100</u>	bureb i					
	[′] IL Σ Are		Base	Σ Hse	Add Flow				-	Flow (1/s)
(1	n) (ha)	E TOM	r (1/s)		(1/s)	(mm)	(11/5)	(111/5)	(l/s)	(1/5)
F3.000 14.	711 0.00	0	1.2	0	0.0	32	0.45	0.71	12.6	1.2
F3.001 14.			2.4	0	0.0	44	0.55	0.71		2.4
F3.002 13.	980 0.00	0	2.4	0	0.0	44	0.55	0.71	12.6	2.4
F3.003 13.	271 0.00	0	3.3	0	0.0	52	0.60	0.71	12.6	3.3
F3.004 12.	687 0.00	0	4.2	0	0.0	60	0.64	0.71	12.6	4.2
F4.000 14.	924 0.00	0	0.0	0	0.0	0	0.00	1.44	25.4	0.0
		0	4.2	0	0.0	60	0.64	0.71	12.6	4.2
F3.005 12.	357 0.00	0								
F3.005 12. F5.000 12.			1.1	0	0.0	26	0.55	1.00	17.7	1.1
	022 0.00	0		0	0.0	26 68	0.55	1.00		1.1 5.3

1.7 0

8.7 0

0

0 0

©1982-2011 Micro Drainage Ltd

8.7

0.6

0.9

0.0

0.0

0.0

0.0

0.0

37 0.49 0.71 12.6 1.7

910.770.7112.68.7910.770.7112.68.7

22 0.36 0.71 12.6 0.6

0.9

27 0.41 0.71 12.6

F6.000 11.459 0.000

F3.00810.6360.000F3.00910.3880.000

F7.000 18.115 0.000

F7.001 17.650 0.000

URS Infrastructure & Env:	ironment UK Ltd	Page 3
Scott House	North West Cambridge	
Alencon Link	Foul Network 3	
Basingstoke RG21 7PP		LUCICO ON
Date 20.11.12	Designed by 24321ip	
File FW_Net_3.mdx	Checked by	
Micro Drainage	Network W.12.6	

	Netw	ork I	Desigr	n Tabi	le for	FW_NET_3	.fws		
PN	Length (m)	Fall (m)	Slope (1:X)		Houses	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)
	19.047 15.542				0		1.500	0	150 150
	12.337 90.794				0		1.500	0	150 150
F7.006	128.146	0.854	150.0	0.000	0	3.3	1.500	0	150 150
	100.437				0		1.500		
F8.001	100.437	1.014	99.1	0.000	0	2.9	1.500	0	150
F9.000	47.766	0.318	150.0	0.000	0	0.4	1.500	0	150
	68.436 29.746				0		1.500	0	150 150
	111.381				0		1.500	0	150
F10.000	95.350	1.917	49.7	0.000	0	0.8	1.500	0	150
	70.594 68.958				0 0		1.500 1.500	0 0	<mark>150</mark> 150

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)	Σ Hse	Add Flow (1/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
F7.002	17.542	0.000	0.9	0	0.0	27	0.41	0.71	12.6	0.9
F7.003	17.415	0.000	0.9	0	0.0	27	0.41	0.71	12.6	0.9
F7.004	17.311	0.000	0.9	0	0.0	27	0.41	0.71	12.6	0.9
F7.005	17.229	0.000	0.9	0	0.0	27	0.41	0.71	12.6	0.9
F7.006	16.624	0.000	4.2	0	0.0	60	0.64	0.71	12.6	4.2
F7.007	15.770	0.000	5.0	0	0.0	47	1.05	1.32	23.4	5.0
F8.000	20.925	0.000	0.6	0	0.0	22	0.36	0.72	12.7	0.6
F8.001	20.251	0.000	3.5	0	0.0	49	0.71	0.88	15.6	3.5
F9.000	18.884	0.000	0.4	0	0.0	19	0.32	0.71	12.6	0.4
F8.002	18.566	0.000	4.0	0	0.0	38	1.16	1.66	29.3	4.0
F8.003	16.120	0.000	4.3	0	0.0	37	1.29	1.87	33.1	4.3
F7.008	14.769	0.000	10.1	0	0.0	78	1.10	1.08	19.1	10.1
F10.000	20.792	0.000	0.8	0	0.0	20	0.58	1.24	22.0	0.8
F11.000	21.256	0.000	0.2	0	0.0	14	0.25	0.71	12.6	0.2
F11.001	20.785	0.000	0.8	0	0.0	18	0.65	1.46	25.8	0.8
		(01982-2011	Mic	ro Drain	age I	ltd			

Scott House				UK Lt			Pa	age 4		
		Nc	orth W	est Ca	mbric	lge				
Alencon Link		Fc	oul Ne	twork	3		۲	$\overline{\gamma}$		201
Basingstoke RG	21 7PP							<u> </u>	<u>15</u>	<u>r</u>
Date 20.11.12		De	signe	d by 2	4321i	р			ST.	โกล
File FW Net 3.m	dx	Ch	lecked	by					<u> </u>	
Micro Drainage		Ne	etwork	W.12.	6					
	Note		Dooian	mable	for		ш 0	free		
	Netw	IOLK	Desigi	LIADI	e lor	<u>FW_NE</u>	1_3	<u>. IWS</u>		
PN	Length	Fall	Slope	Area H	louses	Base	2	k	HYD	DIA
	(m)	(m)	(1:X)	(ha)		Flow (]	/s)	(mm)	SECT	(mm)
F10.001	90.044	1.264	71.2	0.000	0		0.0	1.500	0	150
	30.975				0			1.500		150
	81.743				0			1.500		
F7 ∩∩9	14.845	0.363	40 9	0.000	0		0.0	1.500	0	150
17.005	11.010	0.000	10.9	0.000	0		0.0	1.000	Ũ	100
F12.000	150.000	1.655	90.6	0.000	0		0.7	1.500	0	150
F12.001	60.360	1.152	52.4	0.000	0		0.5	1.500	0	150
F12.002	22.288	0.592	37.7	0.000	0		0.0	1.500	0	150
F12.003	89.785	3.195	28.1	0.000	0		0.0	1.500	0	150
F13.000	70.580	0.306	230.7	0.000	0		0.5	1.500	0	150
F13.001	17.465	0.263	66.4	0.000	0		0.0	1.500	0	150
F13.002	39.835	1.363	29.2	0.000	0		3.7	1.500	0	150
F13.003	90.903	3.636	25.0	0.000	0		1.7	1.500	0	150
F13.004	61.737	1.436	43.0	0.000	0		1.1	1.500	0	150
			56 7	0 000	0		0.0	1.500	0	150
F12.004	116.919	2.061	50.7	0.000						
	116.919 93.402				0		2.5	1.500	0	150

PN	US/IL	Σ Area	ΣВ	ase	Σ Hse	Add Flow	P.Dep	P.Vel	Vel	Cap	Flow	
	(m)	(ha)	Flow	(l/s)		(l/s)	(mm)	(m/s)	(m/s)	(l/s)	(1/s)	
F10.001	18.875	0.000		1.6	0	0.0	30	0.63	1.04	18.4	1.6	
F10.002	17.611	0.000		2.1	0	0.0	27	0.98	1.74	30.7	2.1	
F10.003	16.401	0.000		2.1	0			1.00	1.77	31.3		
F7.009	13.073	0.000		12.2	0	0.0	75	1.37	1.37	24.2	12.2	
F12.000	22.083	0.000		0.7	0	0.0	21	0.45	0.92	16.3	0.7	
F12.001	20.428	0.000		1.2	0	0.0	24	0.65	1.21	21.4	1.2	
F12.002	19.276	0.000		1.2	0	0.0	22	0.72	1.43	25.3	1.2	
F12.003	18.684	0.000		1.2	0	0.0	21	0.80	1.66	29.3	1.2	
F13.000	22.492	0.000		0.5	0	0.0	23	0.29	0.57	10.2	0.5	
F13.001	22.186	0.000		0.5	0	0.0	17	0.45	1.08	19.0	0.5	
F13.002	21.923	0.000		4.2	0	0.0	39	1.15	1.62	28.7	4.2	
F13.003	20.560	0.000		5.9	0	0.0	44	1.35	1.76	31.0	5.9	
F13.004	16.924	0.000		7.0	0	0.0	56	1.16	1.34	23.7	7.0	
F12.004	15.489	0.000		8.2	0	0.0	66	1.10	1.16	20.6	8.2	
F14.000	17.820	0.000		2.5	0	0.0	29	1.03	1.72	30.4	2.5	
F14.001	14.233	0.000		6.2	0	0.0	54	1.08	1.27	22.4	6.2	
			31982	-2011	Mia	ro Drain		.+d				
		6	91 702			TO DIAL	iuge i	Juu				

URS Infrastructure & Env	Page 5	
Scott House	North West Cambridge	
Alencon Link	Foul Network 3	
Basingstoke RG21 7PP		TTTERE
Date 20.11.12	Designed by 24321ip	
File FW_Net_3.mdx	Checked by	
Micro Drainage	Network W.12.6	

Network Design Table for FW_NET_3.fws

PN	Length (m)	Fall (m)	-	Area (ha)	Houses	Ba Flow	ase (l/s)	k (mm)	HYD SECT	DIA (mm)
F12.005	110.646	0.970	114.1	0.000	0		0.0	1.500	0	150
F12.006	56.997	0.380	150.0	0.000	0		6.0	1.500	0	225
F12.007	36.619	0.244	150.0	0.000	0		0.9	1.500	0	225
F7.010	80.589	0.589	136.8	0.000	0		0.0	1.500	0	225
F1.008	5.516	0.025	220.6	0.000	0		0.0	1.500	0	300

<u>Network Results Table</u>

PN	US/IL (m)		Σ Base Flow (l/s)	Σ Hse	Add Flow (l/s)	-	P.Vel (m/s)		-	Flow (1/s)	
F12.005 F12.006 F12.007	12.382		14.4 20.4 21.3	0 0 0	0.0 0.0 0.0	122 119 122	0.96	0.94			
F7.010	11.758	0.000	33.5	0	0.0	161	1.10	0.98	39.0	33.5	
F1.008	9.531	0.000	44.7	0	0.0	181	1.00	0.93	65.9	44.7	

URS Infrastructure & Env	Page 6	
Scott House	North West Cambridge	
Alencon Link	Foul Network 3	
Basingstoke RG21 7PP		LULICIO ON
Date 20.11.12	Designed by 24321ip	
File FW_Net_3.mdx	Checked by	
Micro Drainage	Network W.12.6	

<u>Upstream Manhole</u>

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F1.000	0	150	F1	13.545	12.045	1.350	Open Manhole	1050
F1.001	0	150	F2	13.702	11.669	1.883	Open Manhole	1200
F1.002	0	150	F3	13.839	11.244	2.445	Open Manhole	1200
F1.003	0	150	F4	13.267	10.807	2.310	Open Manhole	1200
F1.004	0	150	F5	12.878	10.682	2.046	Open Manhole	1200
F1.005	0	150	F6	12.720	10.423	2.147	Open Manhole	1200
F1.006	0	150	F7	12.734	9.982	2.602	Open Manhole	1200
F2.000	0	150	F8	13.919	12.419	1.350	Open Manhole	1050
F2.001	0	150	F9	13.295	11.796	1.349	Open Manhole	1050
F1.007	0	150	F10	12.698	9.874	2.674	Open Manhole	1200
F3.000	0	150	F11	16.211	14.711	1.350	Open Manhole	1050
F3.001	0	150	F12	16.148	14.352	1.646	Open Manhole	1200
F3.002	0	150	F13	16.572	13.980	2.442	Open Manhole	1200
F3.003	0	150	F14	17.637	13.271	4.216	Open Manhole	1200
F3.004	0	150	F15	16.645	12.687	3.808	Open Manhole	1200
F4.000	0	150	F16	16.424	14.924	1.350	Open Manhole	1050

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F1.000	56.463	150.2	F2	13.702	11.669	1.883	Open Manhole	1200
F1.001	63.724	149.9	F3	13.839	11.244	2.445	Open Manhole	1200
F1.002	65.618	150.2	F4	13.267	10.807	2.310	Open Manhole	1200
F1.003	18.728	150.0	F5	12.878	10.682	2.046	Open Manhole	1200
F1.004	38.885	150.1	F6	12.720	10.423	2.147	Open Manhole	1200
F1.005	66.093	149.9	F7	12.734	9.982	2.602	Open Manhole	1200
F1.006	16.128	149.3	F10	12.698	9.874	2.674	Open Manhole	1200
F2.000	25.722	41.3	F9	13.295	11.796	1.349	Open Manhole	1050
F2.001	30.238	54.1	F10	12.698	11.237		Open Manhole	1200
F1.007	28.987	150.2	F61	12.670	9.681	2.839	Open Manhole	1200
F3.000	53.827	149.9	F12	16.148	14.352	1.646	Open Manhole	1200
F3.001	55.842	150.1	F13	16.572	13.980	2.442	Open Manhole	1200
F3.002	106.364	150.0	F14	17.637	13.271	4.216	Open Manhole	1200
F3.003	87.547	149.9	F15	16.645	12.687	3.808	Open Manhole	1200
F3.004	49.560	150.2	F17	15.263	12.357	2.756	Open Manhole	1200
F4.000	54.726	37.2	F17	15.263	13.453	1.660	Open Manhole	1200
		(©1982	2-2011	Micro I	Drainag	e Ltd	

URS Infrastructure & Env:	Page 7	
Scott House	North West Cambridge	
Alencon Link	Foul Network 3	
Basingstoke RG21 7PP		
Date 20.11.12	Designed by 24321ip	
File FW_Net_3.mdx	Checked by	
Micro Drainage	Network W.12.6	

<u>Upstream Manhole</u>

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F3.005	0	150	F17	15.263	12.357	2.756	Open Manhole	1200
F5.000	0	150	F18	13.522	12.022	1.350	Open Manhole	1050
F3.006	0	150	F19	13.277	11.635	1.492	Open Manhole	1050
F3.007	0	150	F20	13.829	10.891	2.788	Open Manhole	1200
F6.000	0	150	F21	12.959	11.459	1.350	Open Manhole	1050
F3.008	0	150	F22	12,651	10.636	1 865	Open Manhole	1200
F3.000	0	150	F23	12.001	10.388		Open Manhole	1200
							.1	
F7.000	0	150	F24	19.615	18.115	1.350	Open Manhole	1050
F7.001	0	150	F25	19.495	17.650	1.694	Open Manhole	1200
F7.002	0	150	F26	19.547	17.542	1.855	Open Manhole	1200
F7.003	0	150	F27	19.654	17.415	2.089	Open Manhole	1200
F7.004	0	150	F28	19.753	17.311	2.291	Open Manhole	1200
F7.005	0	150	F29	19.819	17.229	2.439	Open Manhole	1200
F7.006	0	150	F30	19.156	16.624	2.382	Open Manhole	1200

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)	
F3.005	108.253	149.9	F19	13.277	11.635	1.492	Open Manhole	1050	
F5.000	22.656	76.3	F19	13.277	11.725	1.402	Open Manhole	1050	
	111.554 38.229			13.829 12.651			Open Manhole Open Manhole	1200 1200	
F6.000	32.665	150.0	F22	12.651	11.241	1.260	Open Manhole	1200	
F3.008 F3.009	37.254 9.904			12.574 12.670	10.388 10.322		Open Manhole Open Manhole	1200 1200	
F7.000 F7.001	69.699 16.250	150.0		19.495 19.547		1.855	Open Manhole Open Manhole	1200 1200	
F7.002 F7.003 F7.004	19.047 15.542 12.337	150.0	F28	19.654 19.753 19.819	17.311	2.291	Open Manhole Open Manhole Open Manhole	1200 1200 1200	
	90.794 128.146			19.156 17.386			Open Manhole Open Manhole	1200 1050	
	©1982-2011 Micro Drainage Ltd								

URS Infrastructure & Env.	Page 8	
Scott House	North West Cambridge	
Alencon Link	Foul Network 3	
Basingstoke RG21 7PP		Trincho
Date 20.11.12	Designed by 24321ip	
File FW_Net_3.mdx	Checked by	
Micro Drainage	Network W.12.6	

<u>Upstream Manhole</u>

PN	-	Diam (mm)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F7.007	0	150	F31	17.386	15.770	1.467	Open Manhole	1050
F8.000	0	150	F32	22.425	20.925	1.350	Open Manhole	1050
F8.001	0	150	F33	21.751	20.251	1.350	Open Manhole	1050
F9.000	0	150	F34	20.384	18.884	1.350	Open Manhole	1050
F8.002	0	150	F35	20.737	18.566	2.022	Open Manhole	1200
F8.003	0	150	F36	17.620	16.120	1.351	Open Manhole	1050
F7.008	0	150	F37	16.270	14.769	1.351	Open Manhole	1050
F10.000	0	150	F38	22.292	20.792	1.350	Open Manhole	1050
F11.000	0	150	F39	22.756	21.256	1.350	Open Manhole	1050
F11.001	0	150	F40	22.704	20.785	1.768	Open Manhole	1200
F10.001	0	150	F41	20.375	18.875	1.350	Open Manhole	1050
F10.002	0	150	F42	19.111	17.611		Open Manhole	
F10.003	0	150	F43	17.901	16.401	1.350	Open Manhole	1050

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)		
F7.007	43.877	43.9	F37	16.270	14.770	1.350	Open Manhole	1050		
F8.000	100.437	149.0	F33	21.751	20.251	1.350	Open Manhole	1050		
F8.001	100.437	99.1	F35	20.737	19.237	1.350	Open Manhole	1200		
F9.000	47.766	150.0	F35	20.737	18.566	2.022	Open Manhole	1200		
F8.002	68.436	28.0	F36	17.620	16.120	1.351	Open Manhole	1050		
F8.003	29.746	22.0	F37	16.270	14.769	1.351	Open Manhole	1050		
F7.008	111.381	65.7	F44	14.574	13.073	1.351	Open Manhole	1050		
F10.000	95.350	49.7	F41	20.375	18.875	1.350	Open Manhole	1050		
F11.000	70.594	150.0	F40	22.704	20.785	1.768	Open Manhole	1200		
F11.001	68.958	36.1	F41	20.375	18.875	1.349	Open Manhole	1050		
F10.001	90.044	71.2	F42	19.111	17.611	1.350	Open Manhole	1050		
F10.002	30.975	25.6	F43	17.901	16.401	1.350	Open Manhole	1050		
F10.003	81.743	24.6	F44	14.574	13.074	1.350	Open Manhole	1050		
	©1982-2011 Micro Drainage Ltd									

URS Infrastructure & Env:	Page 9	
Scott House	North West Cambridge	
Alencon Link	Foul Network 3	
Basingstoke RG21 7PP		Tricko
Date 20.11.12	Designed by 24321ip	
File FW_Net_3.mdx	Checked by	
Micro Drainage	Network W.12.6	

<u>Upstream Manhole</u>

PN	Hyd Sect	Diam (mm)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F7.009	0	150	F44	14.574	13.073	1.351	Open Manhole	1050
F12.000	0	150	F45	23.583	22.083	1.350	Open Manhole	1050
F12.001	0	150	F46	21.928	20.428	1.350	Open Manhole	1050
F12.002	0	150	F47	20.776	19.276	1.350	Open Manhole	1050
F12.003	0	150	F48	20.184	18.684	1.350	Open Manhole	1050
F13.000	0	150	F49	23.992	22.492	1.350	Open Manhole	1050
F13.001	0	150	F50	23.686	22.186	1.350	Open Manhole	1050
F13.002	0	150	F51	23.423	21.923	1.350	Open Manhole	1050
F13.003	0	150	F52	22.060	20.560	1.350	Open Manhole	1050
F13.004	0	150	F53	18.425	16.924	1.350	Open Manhole	1050
F12.004	0	150	F54	16.989	15.489	1.350	Open Manhole	1050
F14.000	0	150	F55	19.320	17.820	1.350	Open Manhole	1050
F14.001	0	150	F56	15.733	14.233	1.350	Open Manhole	1050
F12.005	0	150	F57	14.927	13.427	1.350	Open Manhole	1050

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)		
F7.009	14.845	40.9	F60	14.211	12.710	1.351	Open Manhole	1200		
F12.000	150.000	90.6	F46	21.928	20.428	1.350	Open Manhole	1050		
F12.001	60.360	52.4	F47	20.776	19.276	1.350	Open Manhole	1050		
F12.002	22.288	37.7	F48	20.184	18.684	1.350	Open Manhole	1050		
F12.003	89.785	28.1	F54	16.989	15.489	1.350	Open Manhole	1050		
F13.000				23.686			Open Manhole			
F13.001	17.465	66.4	F51	23.423	21.923	1.350	Open Manhole	1050		
F13.002	39.835	29.2	F52	22.060	20.560	1.350	Open Manhole	1050		
F13.003	90.903	25.0	F53	18.425	16.924	1.350	Open Manhole	1050		
F13.004	61.737	43.0	F54	16.989	15.489	1.350	Open Manhole	1050		
F12.004	116.919	56.7	F57	14.927	13.427	1.350	Open Manhole	1050		
E14 000	93.402	26.0	F56	15 733	14.233	1 350	Open Manhole	1050		
F14.000		47.9	F57	14.927	13.427		Open Manhole	1050		
F14.001	20.373	47.9	E J /	14.927	13.427	1.330	open Mannore	1030		
F12.005	110.646	114.1	F58	14.900	12.457	2.293	Open Manhole	1200		
							-			
@1092_2011 Migro Drainage Itd										
	©1982-2011 Micro Drainage Ltd									

URS Infrastructure & Env	Page 10	
Scott House	North West Cambridge	
Alencon Link	Foul Network 3	
Basingstoke RG21 7PP		LULICHO ON
Date 20.11.12	Designed by 24321ip	1) Patracia
File FW_Net_3.mdx	Checked by	
Micro Drainage	Network W.12.6	

<u>Upstream Manhole</u>

PN	-	Diam (mm)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F12.006 F12.007	0 0		F58 F59		12.382 12.002		Open Manhole Open Manhole	1200 1200
F7.010	0	225	F60	14.211	11.758	2.228	Open Manhole	1200
F1.008	0	300	F61	12.670	9.531	2.839	Open Manhole	1200

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F12.006 F12.007				14.647 14.211			Open Manhole Open Manhole	1200 1200
F7.010	80.589	136.8	F61	12.670	11.169	1.276	Open Manhole	1200
F1.008	5.516	220.6	F62	12.760	9.506	2.954	Open Manhole	1200

URS Infrastructure & Env	Page 1	
Scott House	North West Cambridge	
Alencon Link	Foul Network 4	
Basingstoke RG21 7PP		LULICIO V
Date 20.11.12	Designed by 24321ip	
File FW_Net_4.mdx	Checked by	
Micro Drainage	Network W.12.6	

FOUL SEWERAGE DESIGN

Design Criteria for FW_NET_4.fws

Pipe Sizes STANDARD Manhole Sizes STANDARD

Industrial Flow (1/s/ha)0.00Add Flow / Climate Change (%)0Industrial Peak Flow Factor0.00Minimum Backdrop Height (m)0.000Flow Per Person (1/per/day)0.00Maximum Backdrop Height (m)0.000Persons per House0.00Min Design Depth for Optimisation (m)1.500Domestic (1/s/ha)0.00Min Vel for Auto Design only (m/s)0.75Domestic Peak Flow Factor0.00Min Slope for Optimisation (1:X)500

Designed with Level Soffits

Network Design Table for FW NET 4.fws

PN	Length (m)	Fall (m)	Slope (1:X)		Houses	ase (l/s)	k (mm)	HYD SECT	DIA (mm)
F1.000	105.210	1.795	58.6	0.000	0	0.5	1.500	0	150
F1.001	105.173	1.622	64.8	0.000	0	0.0	1.500	0	150
F2.000	38.776	0.287	135.0	0.000	0	1.6	1.500	0	150
F1.002	60.327	1.618	37.3	0.000	0	0.0	1.500	0	150
F3.000	96.513	0.715	135.0	0.000	0	0.6	1.500	0	150
F3.001	96.942	0.718	135.0	0.000	0	0.0	1.500	0	150
F3.002	5.905	0.044	135.0	0.000	0	0.0	1.500	0	150
F1.003	13.218	0.098	135.0	0.000	0	0.0	1.500	0	150

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)	Σ Hse	Add Flow (1/s)	P.Dep (mm)			Cap (l/s)	Flow (1/s)	
	16.289	0.000	0.5	0	0.0	17	0.47	1.15	20.2	0.5	
F1.001	14.494	0.000	0.5	0	0.0	17	0.46	1.09	19.2	0.5	
F2.000	13.143	0.000	1.6	0	0.0	35	0.50	0.75	13.3	1.6	
F1.002	12.856	0.000	2.1	0	0.0	29	0.86	1.44	25.4	2.1	
F3.000	11.133	0.000	0.6	0	0.0	22	0.37	0.75	13.3	0.6	
F3.001	10.418	0.000	0.6	0	0.0	22	0.37	0.75	13.3	0.6	
F3.002	9.700	0.000	0.6	0	0.0	22	0.37	0.75	13.3	0.6	
F1.003	9.656	0.000	2.7	0	0.0	46	0.59	0.75	13.3	2.7	

URS Infrastructure & Env.	Page 2	
Scott House	North West Cambridge	
Alencon Link	Foul Network 4	
Basingstoke RG21 7PP		LUIGHO ON
Date 20.11.12	Designed by 24321ip	
File FW_Net_4.mdx	Checked by	
Micro Drainage	Network W.12.6	

<u>Upstream Manhole</u>

PN	Hyd Sect		MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F1.000	0	150	F1	17.789	16.289	1.350	Open Manhole	1050
F1.001	0	150	F2	15.994	14.494	1.350	Open Manhole	1050
F2.000	0	150	F3	14.643	13.143	1.350	Open Manhole	1050
F1.002	0	150	F4	14.372	12.856	1.366	Open Manhole	1050
F3.000	0		F5	12.633	11.133		Open Manhole	
F3.001	0	150	F6	12.603	10.418	2.035	Open Manhole	1200
F3.002	0	150	F7	12.584	9.700	2.734	Open Manhole	1200
F1.003	0	150	F8	12.738	9.656	2.932	Open Manhole	1200

Downstream Manhole

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F1.000	105.210	58.6	F2	15.994	14.494	1.350	Open Manhole	1050
F1.001	105.173	64.8	F4	14.372	12.872	1.350	Open Manhole	1050
F2.000	38.776	135.0	F4	14.372	12.856	1.366	Open Manhole	1050
F1.002	60.327	37.3	F8	12.738	11.238	1.350	Open Manhole	1200
F3.000	96.513	135.0	F6	12.603	10.418	2.035	Open Manhole	1200
F3.001	96.942	135.0	F7	12.584	9.700	2.734	Open Manhole	1200
F3.002	5.905	135.0	F8	12.738	9.656	2.932	Open Manhole	1200
F1.003	13.218	135.0	F9	12.832	9.558	3.124	Open Manhole	1200

APPENDIX E – OPA FOUL DRAINAGE STRATEGY

FOUL WATER DRAINAGE STRATEGY APRIL 2013

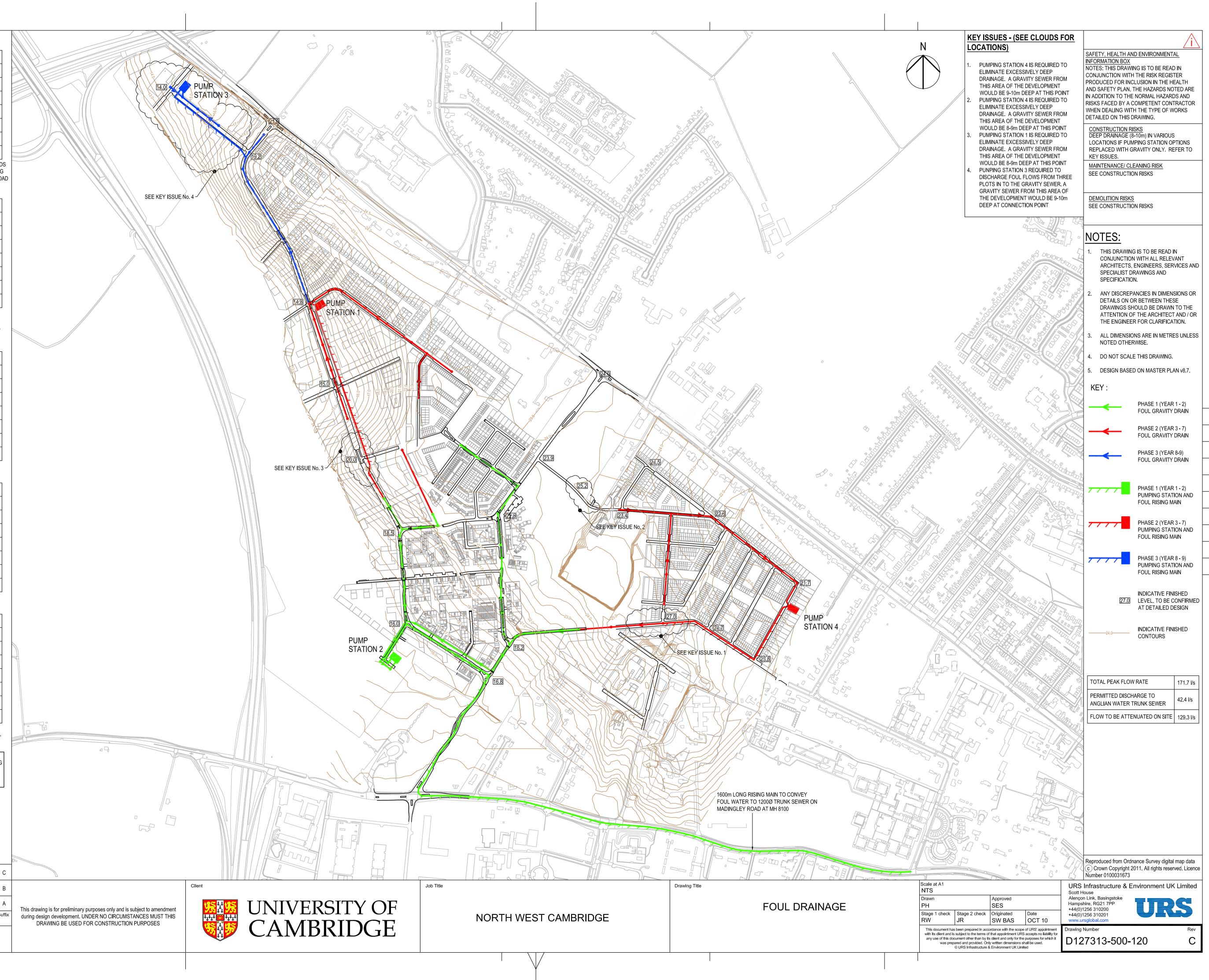
PUMP STATION	1
NO. OF PROPERTIES	745
COMMERCIAL AREA	4 Ha
STUDENT AREA	6 Ha
PEAK FLOW RATE	48.7 l/s
24HR STORAGE REQUIRED	170m³
ATTENUATION STORAGE REQUIRED	132m³
TOTAL STORAGE REQUIRED	302m³

VALUES FOR PUMPING STATION 1 ARE DIRECT LOADS AND DO NOT INCLUDE INFLOWS FROM THE PUMPING STATION 3 VIA THE GRAVITY SEWER. THE TOTAL LOAD ON PUMPING STATION 1 IS A SUMMATION OF THE LOADS ON PUMPING STATIONS 1 & 3

PUMP STATION	2
NO. OF PROPERTIES	1459
COMMERCIAL AREA	7 Ha
STUDENT AREA	3 Ha
PEAK FLOW RATE	83.6 l/s
24HR STORAGE REQUIRED	291m³
ATTENUATION STORAGE REQUIRED	227m ³
TOTAL STORAGE REQUIRED	518m³

VALUES FOR PUMPING STATION 2 ARE DIRECT LOADS AND DO NOT INCLUDE INFLOWS FROM THE OTHER PUMP STATIONS VIA THE GRAVITY SEWERS. FOR THE TOTAL PUMPING STATION 2 LOAD REFER TO TOTAL LOAD TABLE

PUMP STATION	3
NO. OF PROPERTIES	44
COMMERCIAL AREA	2 Ha
STUDENT AREA	0 Ha
PEAK FLOW RATE	4.4 l/s
24HR STORAGE REQUIRED	16m³
ATTENUATION STORAGE REQUIRED	12m³
TOTAL STORAGE REQUIRED	28m³


PUMP STATION	4
NO. OF PROPERTIES	753
COMMERCIAL AREA	0 Ha
STUDENT AREA	0 Ha
PEAK FLOW RATE	34.9 l/s
24HR STORAGE REQUIRED	121m³
ATTENUATION STORAGE REQUIRED	95m³
TOTAL STORAGE REQUIRED	215m³

PUMP STATION	TOTAL
NO. OF PROPERTIES	3000
COMMERCIAL AREA	13.1 Ha
STUDENT AREA	9.6 Ha
PEAK FLOW RATE	171.7 l/s
24HR STORAGE REQUIRED	597m³
ATTENUATION STORAGE REQUIRED	465m³
TOTAL STORAGE REQUIRED	1063m³

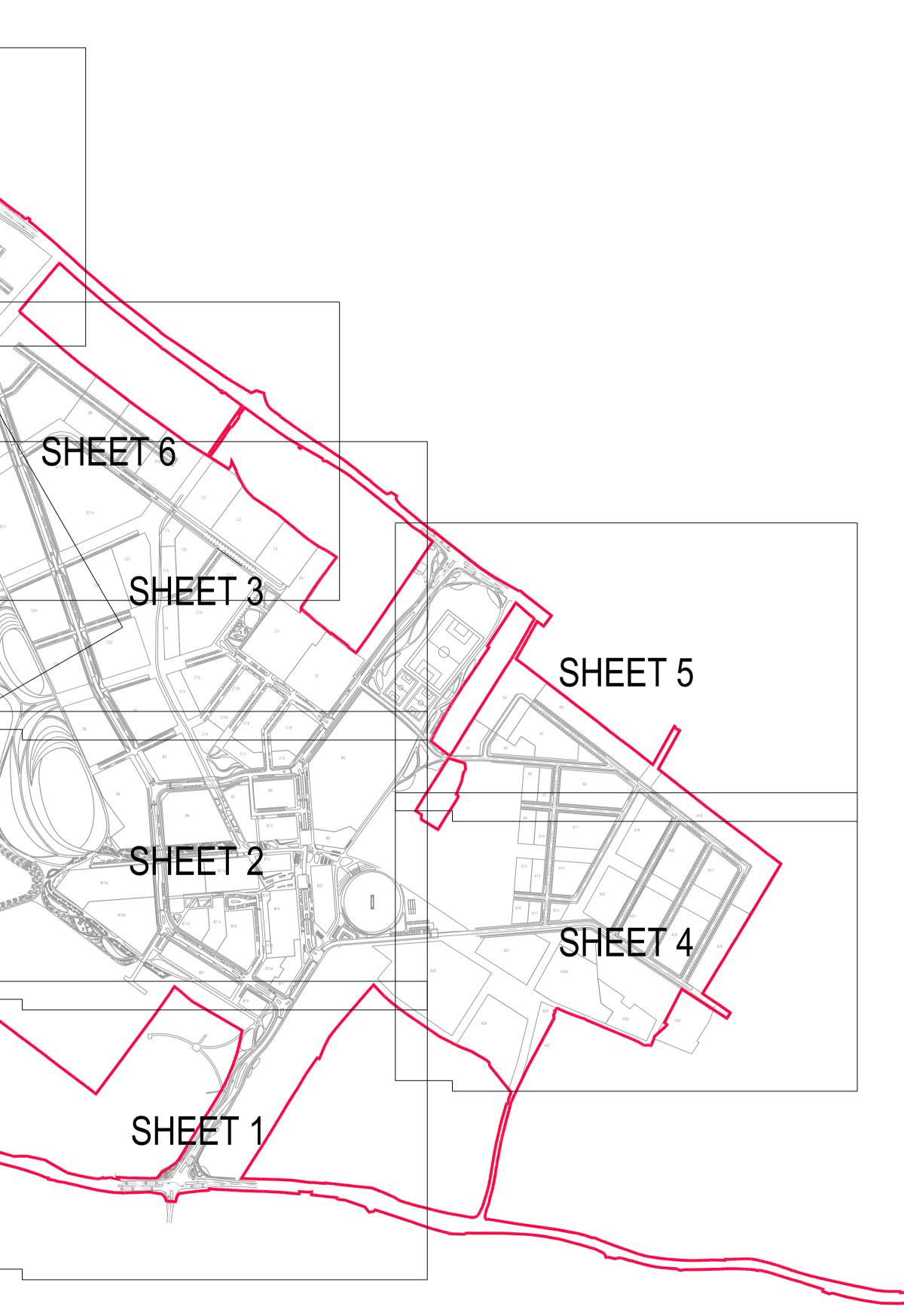
NOTE : COMMERCIAL INCLUDES RESEARCH, HOTEL, SCHOOL, RETAIL AND LOCAL CENTRE.

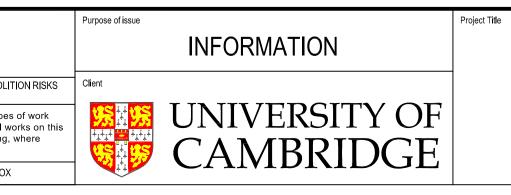
THE DISTRIBUTION OF PROPERTIES, COMMERCIAL AREA & STUDENT AREA SERVED BY EACH PUMPING STATION IS INDICATIVE. VALUES FOR EACH PUMPING STATION WILL BE CONFIRMED PRIOR TO COMMENCEMENT OF DETAILED DESIGN

			2				
PUMPING STATION 2 RELOCATED	IP SES	01.10.12	С				
LAYOUT UPDATED AND STRATEGY REVISED	IP SES	19.06.12	В				
REVISED STORAGE CALCULATIONS	PH RW	04.11.10	А				
Revision Details	By Check	Date	Suffix				
Drawing Status							
PRELIMINARY							

DB1H

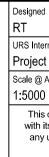
APPENDIX F - DESIGN DRAWINGS SHOWING PROPOSED FOUL SEWERS AND PUMP STATIONS

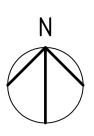

FOUL WATER DRAINAGE STRATEGY APRIL 2013


00							
S-UI-05-DK-CE-050	This drawing is for preliminary purposes only ar during design development. UNDER NO CIRCU DRAWING BE USED FOR CONSTRUC	JMSTANCE	ES MUST "				
ILLS/DR/NWC-UR:							
CAUN					CONSTRUCTION RISKS	MAINTENANCE / CLEANING RISK	DEMOLIT
Ime K \NWC/4		By			detailed on this drawing drawing will be ca	azard/risks normally associated wi g take note of above. It is assume arried out by a competent contract riate, to an appropriate method sta	ed that all w tor working,
File Na	Revision Details	Check	Date	Suffix	SAFETY, HE	EALTH AND ENVIRONMENTAL INFORI	MATION BOX

SHEET 7

C T T T T


0

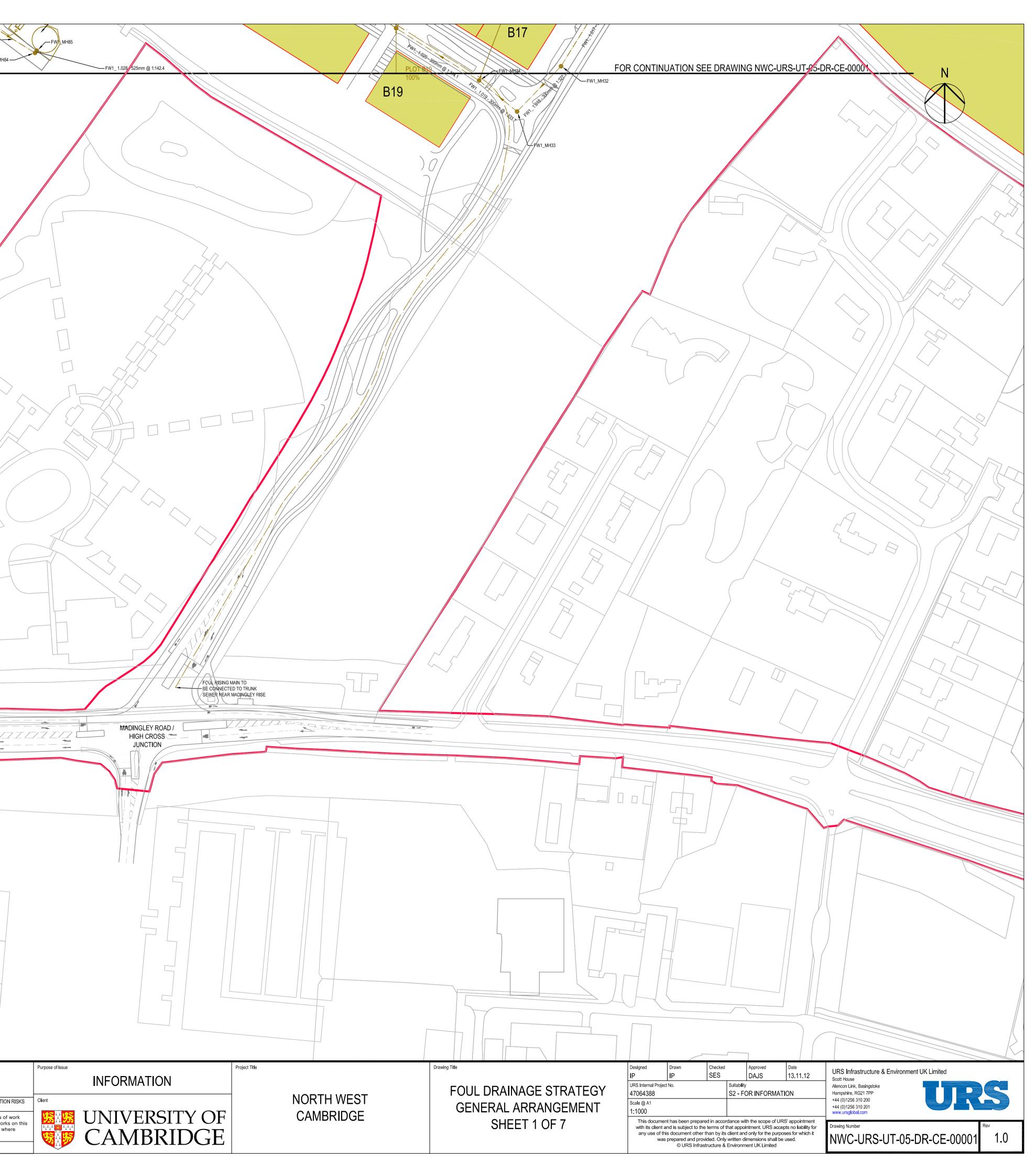


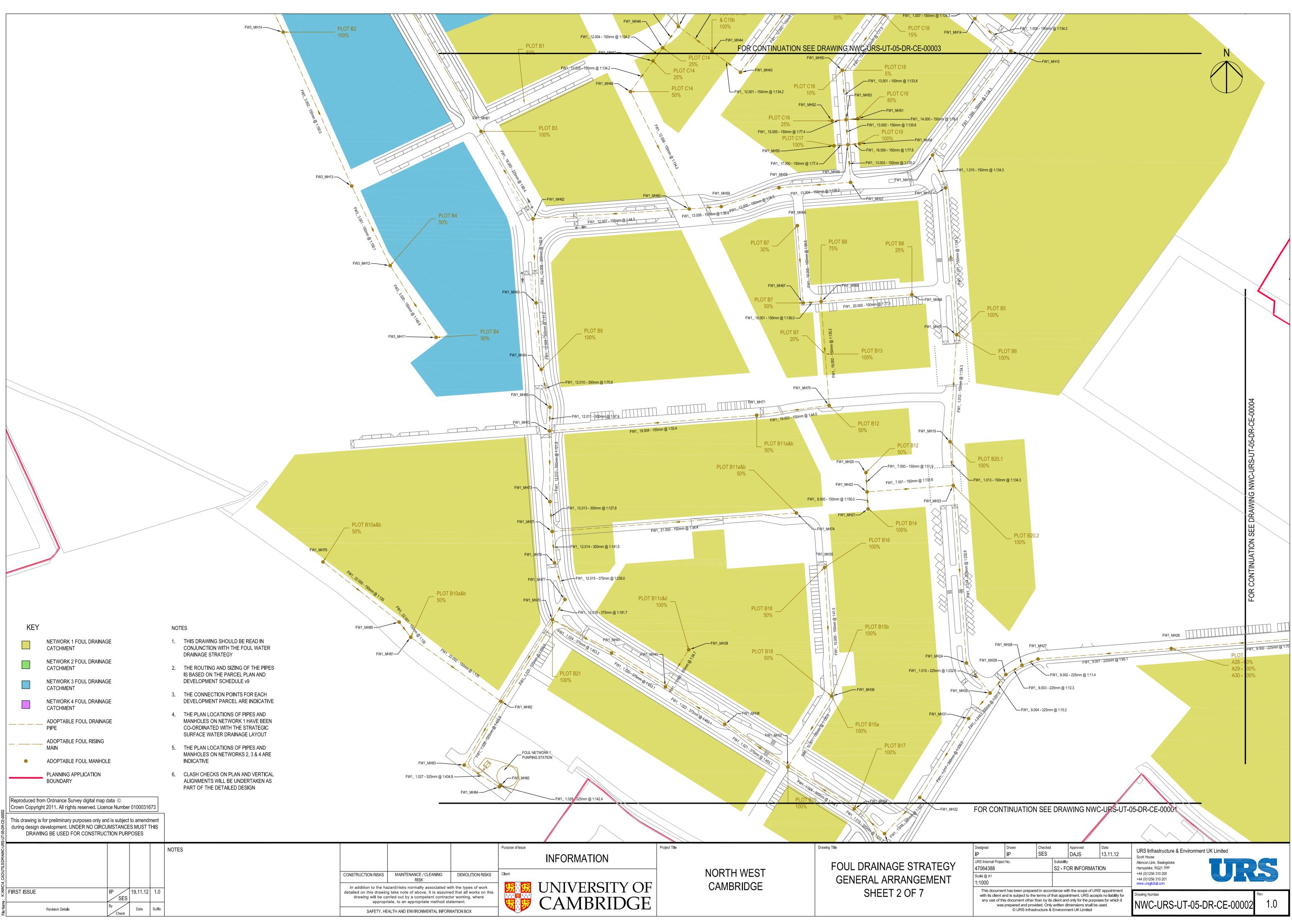
NORTH WEST CAMBRIDGE SURFACE AND FOUL WATER STRATEGY SHEET ARRANGEMENT

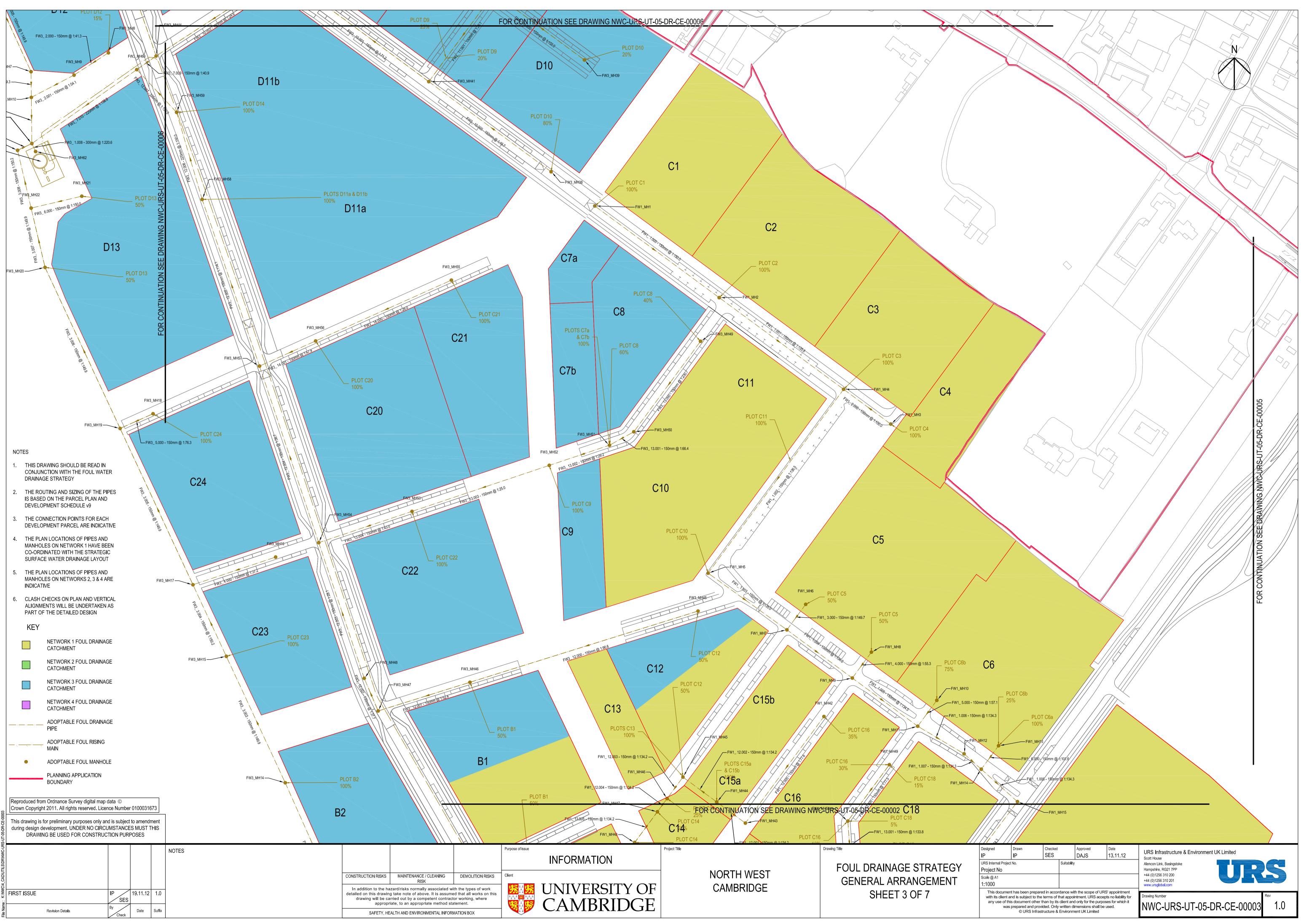
Drawing Title

NOTES

- THIS DRAWINGS IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECTS, ENGINEERS, SERVICES AND SPECIALIST DRAWINGS AND SPECIFICATION.
- 2. ANY DISCREPANCIES IN DIMENSIONS OR DETAILS ON OR BETWEEN THESE DRAWINGS SHOULD BE DRAWN TO THE ATTENTION OF THE ARCHITECT AND / OR THE ENGINEER FOR CLARIFICATION.
- ALL DIMENSIONS ARE IN METRES UNLESS NOTED OTHERWISE.
- 4. DO NOT SCALE THIS DRAWING.

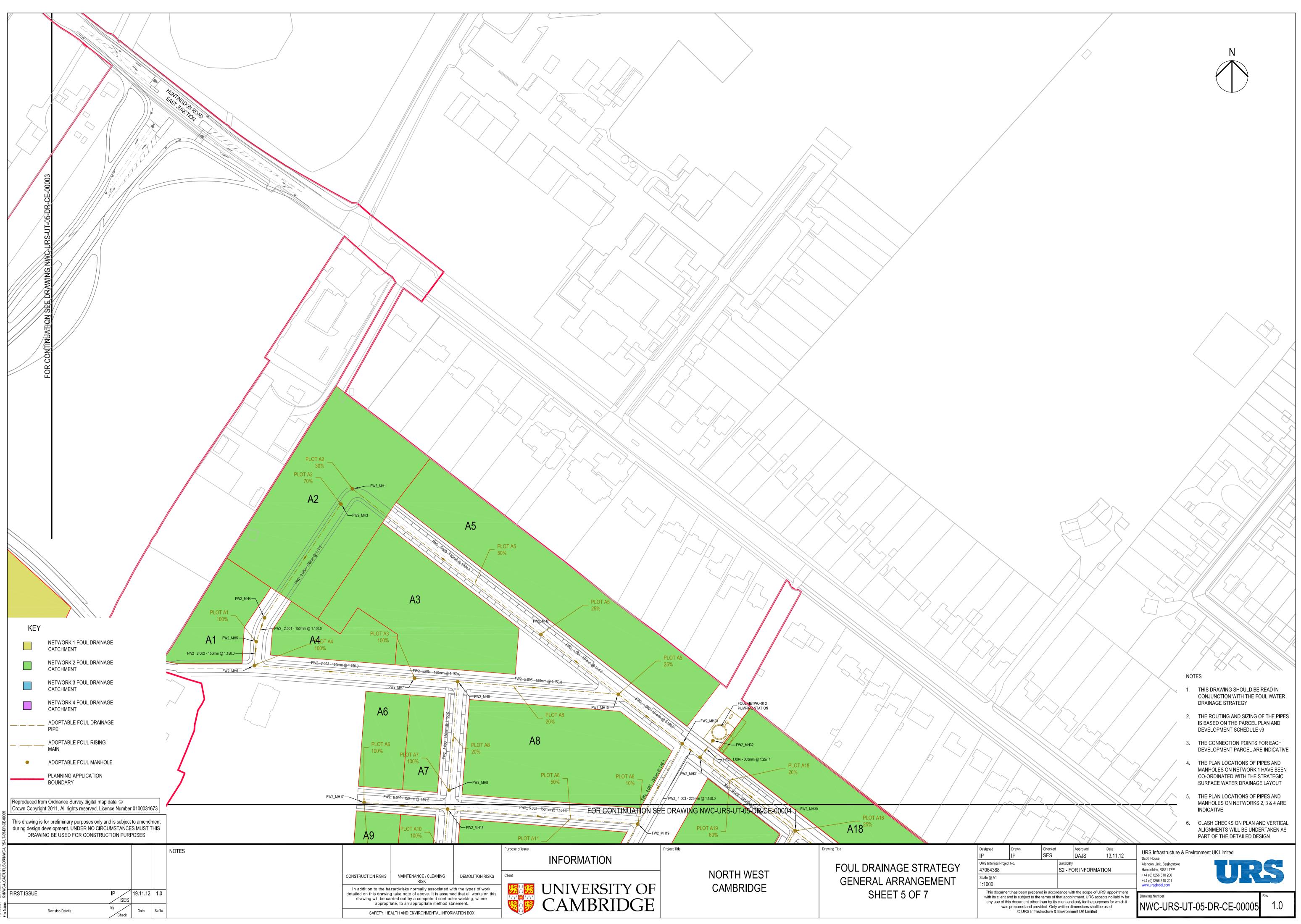

KEY

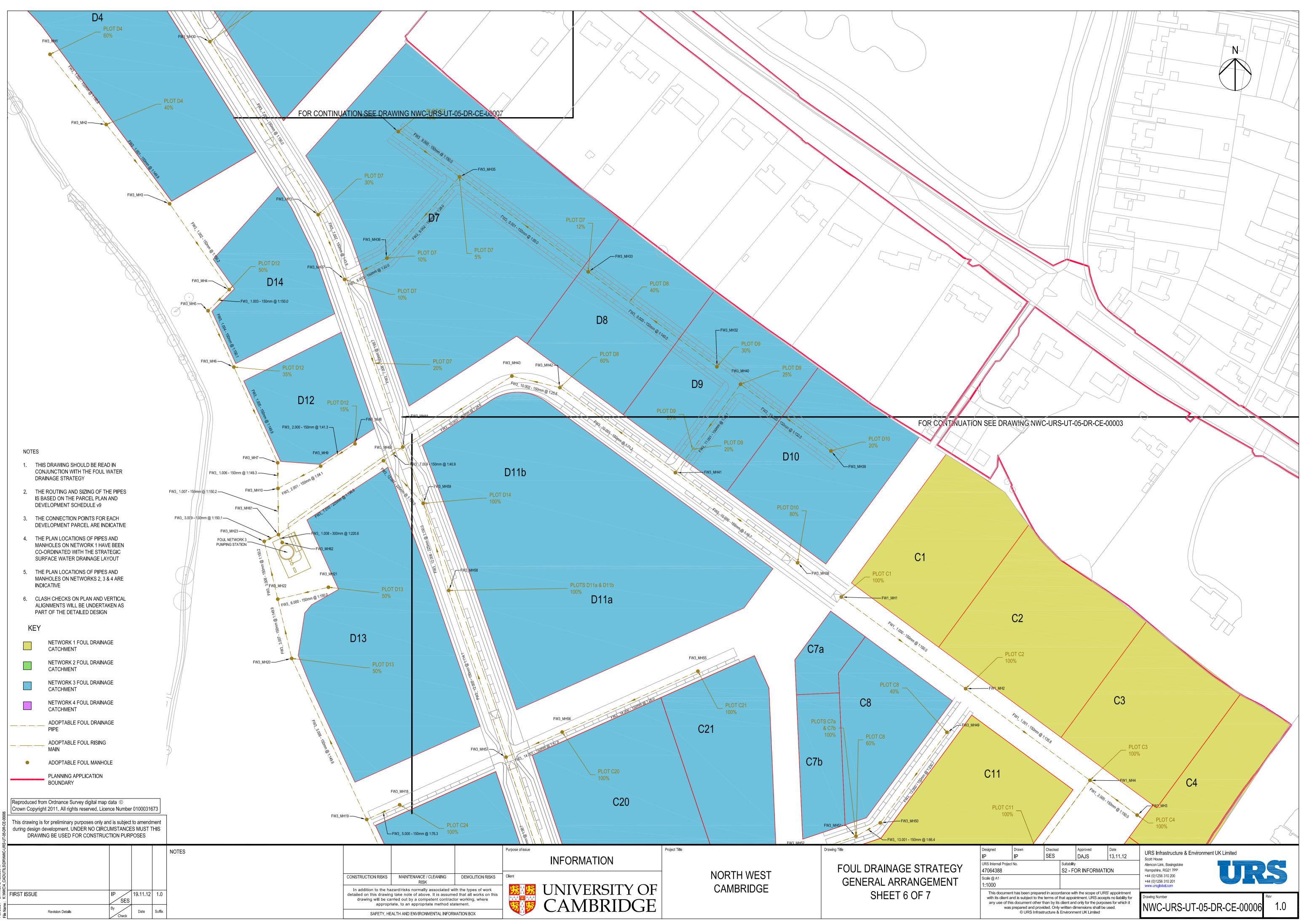

APPLICATION SITE BOUNDARY

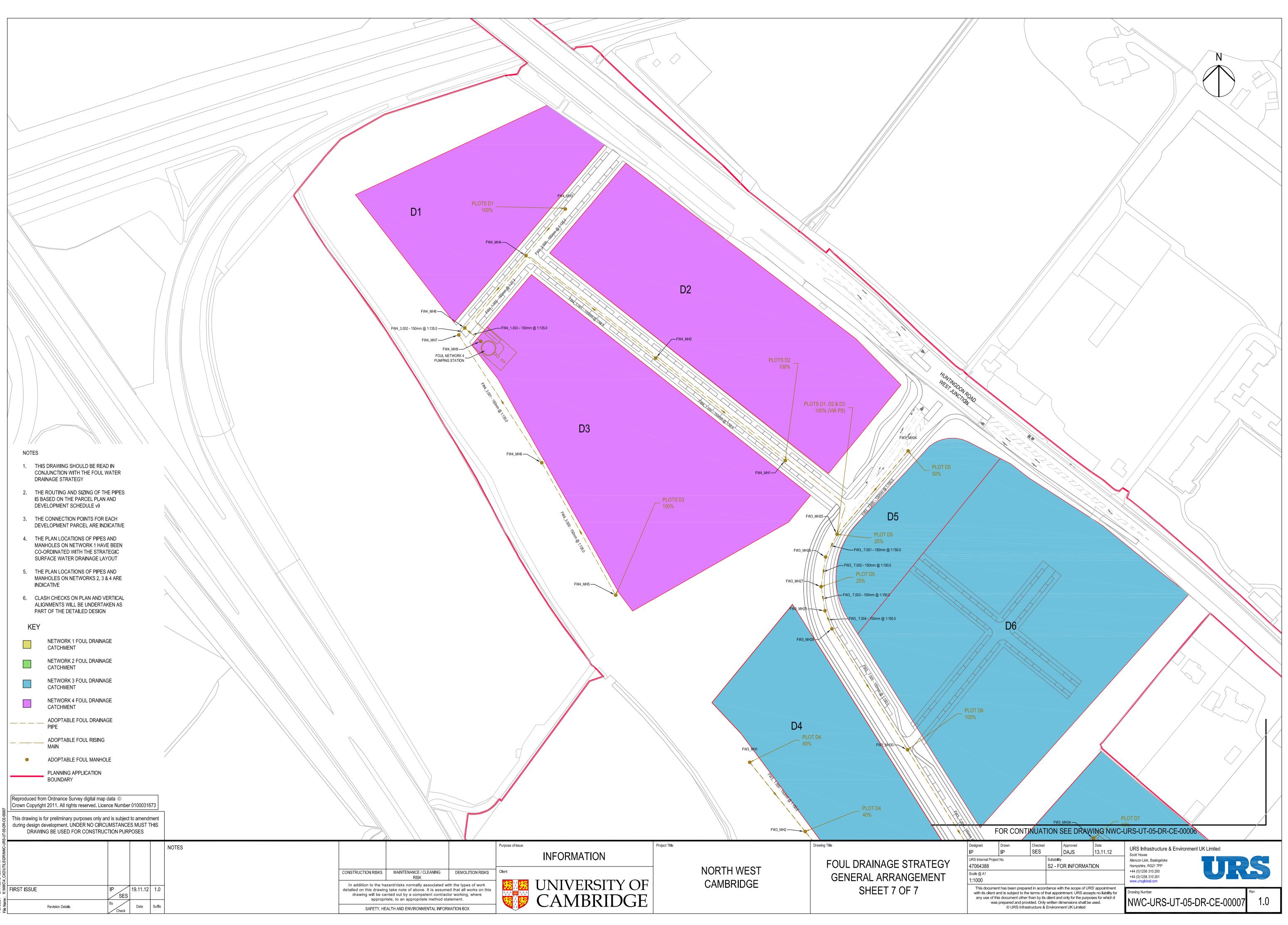

ed	Drawn JC	Checked SES	Approved DAJS	Date 26.11.12	URS Infrastructure & Environment UK Limited		
ternal Project No. Suitabili			ty		Alencon Link, Basingstoke		
ct No					Hampshire, RG21 7PP +44 (0)1256 310 200 +44 (0)1256 310 201		
QA1							
0					www.ursglobal.com		
is document has been prepared in accordance with the scope of URS' appointment its client and is subject to the terms of that appointment. URS accepts no liability for y use of this document other than by its client and only for the purposes for which it was prepared and provided. Only written dimensions shall be used. © URS Infrastructure & Environment UK Limited					Drawing Number NWC-URS-UT-05-DR-CE-00103	Rev 0.1	

				· · · · <u>_</u>	
				FW1_ 1.027 - 525mm @ 1:434	.8FW1_MH84
					×
					\sim
		/		,	
			$\sum_{i=1}^{n}$		
			\bigvee		
KEY	NOTES				
NETWORK 1 FOUL DRAINAGE CATCHMENT	1. THIS DRAWING SHOULD BE READ IN CONJUNCTION WITH THE FOUL WATER DRAINAGE STRATEGY				
NETWORK 2 FOUL DRAINAGE CATCHMENT	2. THE ROUTING AND SIZING OF THE PIPES IS BASED ON THE PARCEL PLAN AND				
NETWORK 3 FOUL DRAINAGE CATCHMENT	3. THE CONNECTION POINTS FOR EACH				
NETWORK 4 FOUL DRAINAGE CATCHMENT	4. THE PLAN LOCATIONS OF PIPES AND		0		
ADOPTABLE FOUL DRAINAGE	MANHOLES ON NETWORK 1 HAVE BEEN CO-ORDINATED WITH THE STRATEGIC SURFACE WATER DRAINAGE LAYOUT				
ADOPTABLE FOUL RISING MAIN	5. THE PLAN LOCATIONS OF PIPES AND MANHOLES ON NETWORKS 2, 3 & 4 ARE				
ADOPTABLE FOUL MANHOLE PLANNING APPLICATION	6. CLASH CHECKS ON PLAN AND VERTICAL				
BOUNDARY	ALIGNMENTS WILL BE UNDERTAKEN AS PART OF THE DETAILED DESIGN				
Reproduced from Ordnance Survey digital map data © Crown Copyright 2011. All rights reserved. Licence Number 0100031673			7		
This drawing is for preliminary purposes only and is subject to amendment during design development. UNDER NO CIRCUMSTANCES MUST THIS DRAWING BE USED FOR CONSTRUCTION PURPOSES		Γ			
	NOTES			<u> </u>	
			CONSTRUCTION RISKS	MAINTENANCE / CLEANING	DEMOLITION
FIRST ISSUE	_		In addition to the ha	RISK zard/risks normally associated wi j take note of above. It is assume ried out by a competent contract	th the types of
Revision Details By Date Suffix			appropri	ried out by a competent contract ate, to an appropriate method sta ALTH AND ENVIRONMENTAL INFORM	atement.

Plot Date : 27/11/2012 134856@M File Name : K:NWC/4_CAD/UTILS/DR/NWC-URS-UT-05-







)ate: 27/11/2012 136036PM ****・ K-NWC(4 CAD/UTII S/DR/NWC-HIRS-HIF-05-D

APPENDIX G – CORRESPONDENCE

FOUL WATER DRAINAGE STRATEGY APRIL 2013

From: Sent:	Ian Philpott 30 August 2012 14:19
To:	Dunn Michael
Subject:	
Attachments:	RE: North West Cambridge RE: North West Cambridge - Off-site junctions impacts; 120626
Allaciments.	_NWC_Plot_Schedule_v9A_revised.xls; NWC_REV9A_PHASING_YR1-19_LR.pdf

Mike

Apologies for not getting back to you sooner but I have been somewhat snowed under with this project.

With regards you email below, this is exactly the issue I raised at our meeting. Our Client (University of Cambridge) has a number of consultants appointed on this project and I suspect it is the discussions with AECOM they are referring to. At our meeting I outlined that the they were considering a number of "greener" water solutions such as black water harvesting for non-potable uses etc. However, I am aware that if they wish to proceed with some of these options there are a number of regulatory hurdles to overcome with OFWAT before they can be progressed. Such regulatory issues are not compatible with an on-site commencement on Q1 2013. Therefore, our client has instruct us to progress with Phase 1 using "traditional" drainage techniques.

Further to our meeting please find attached the current development timeline and schedule (this may change in the future). What I refer to as Phase 1 is covered by Year 1 (2014) and Year 2 (2015). Could you please get back to me as soon as possible on what we need to do to move forward.

On a slightly different note I have not had any response to the C3 requests from 12th July (See attached email). Could you chase them down with your planning Engineers.

Thanks

lan

Ian Philpott BEng (Hons) Engineer URS Infrastructure & Environment UK Limited

Scott House, Alencon Link, Basingstoke, Hampshire, RG21 7PP, United Kingdom

Direct: +44 (0)1256 310 617 Mobile: +44 (0)7767 230 143 ian.philpott@urs.com

From: Dunn Michael [mailto:mDunn2@anglianwater.co.uk]
Sent: 24 August 2012 10:33
To: Ian Philpott
Subject: North West Cambridge

Hi lan

With regards to the above development, I had a meeting with our planning team yesterday on how we are taking this forward.

They have asked me to make the recommendations for the site clear, as there seems to be some confusion with how we will serve the site. I mentioned that we had already discussed the pumping station solution and that we may proceed with a detailed assessment to work through what the best 'traditional 'options will be for the site. However planning have also been involved with another consultant regarding a greener strategy for the site including possible black water re harvesting and so on.

Are you able to shed any light from your perspective on where I need to focus the planning team, they obviously have heavy workloads and don't wish to spend time working on options that may never see the light of day!

If you could advise that would be appreciated.

Regards

Mike

Mike Dunn Developer Account Manager Developer Services Mob 07740 072186 E-Mail: <u>mDunn2@anglianwater.co.uk</u> Website: www.anglianwater.co.uk/developers

*___*___ The information contained in this message is likely to be confidential and may be legally privileged. The dissemination, distribution, copying or disclosure of this message, or its contents, is strictly prohibited unless authorised by Anglian Water. It is intended only for the person named as addressee. Anglian Water cannot accept any responsibility for the accuracy or completeness of this message, and does not authorise any contract to be made using the Internet. If you have received this message in error, please immediately return it to the sender at the above address and delete it from your computer.

Anglian Water Services Limited Registered Office: Anglian House, Ambury Road, Huntingdon, Cambridgeshire, PE29 3NZ Registered in England No 2366656

Please consider the environment before printing this email.

From:	Ian Philpott
Sent:	02 October 2012 10:00
То:	Dunn Michael
Subject:	RE: North West Cambridge
Attachments:	D127313-500-120 Rev C.pdf; Figure 1.pdf; landT Issue Sheet 120110.pdf; 120924 AW Sec 98 signed & dated.pdf; 120924 AW Sec 98.pdf; 120626
	_NWC_Plot_Schedule_v9A_revised.xls; V9.pdf

Mike

Please find attached the following

- A Revised copy of the foul strategy drawing 500-120. Please note that we have had to relocate pumping station 2 compared to the previous drawing I circulated to yourself and Rob.
- Location plan (figure 1)
- Copy of the Sec98 form. One being a clean scan. The other being where our client has signed section 1d
- V9 development schedule
- V9 phasing plan

Could you please push this forward as soon as possible as I'm being pressured to get things under way. Any problems please give me a call.

I am currently drafting a schedule based on the V9 development plan outlining the proposed peak flow rates for each type of unit, as discussed at our meeting. Once I have finalised this I will forward this to you so we can agree these flow rates before we begin designing the networks in more detail.

Regards

lan

Ian Philpott BEng (Hons) Engineer URS Infrastructure & Environment UK Limited

Scott House, Alencon Link, Basingstoke, Hampshire, RG21 7PP, United Kingdom

Direct: +44 (0)1256 310 617 Mobile: +44 (0)7767 230 143 ian.philpott@urs.com

From: Dunn Michael [mailto:mDunn2@anglianwater.co.uk]
Sent: 17 September 2012 15:18
To: Ian Philpott
Subject: North West Cambridge

Hi Ian

Following Fridays call, below is the link to the formal application you will need to make for the foul solutions to the site. Once we have received the application we will then be in touch to discuss next steps.

http://www.anglianwater.co.uk/developers/sewer-connection/new-sewer.aspx

In terms of the C3 requests, this was submitted to our planning team on 12 July, along with the plans for the site. I have chased planning up on this and they are due to send me a response shortly. I am out of the office from now until tomorrow afternoon but I have my blackberry switched on so will forward any response that I receive as soon as it hits my email.

Regards

Mike

Mike Dunn Developer Account Manager Developer Services Mob 07740 072186 E-Mail: <u>mDunn2@anglianwater.co.uk</u> Website: www.anglianwater.co.uk/developers

The information contained in this message is likely to be confidential and may be legally privileged. The dissemination, distribution, copying or disclosure of this message, or its contents, is strictly prohibited unless authorised by Anglian Water. It is intended only for the person named as addressee.

Anglian Water cannot accept any responsibility for the accuracy or completeness of this message, and does not authorise any contract to be made using the Internet.

If you have received this message in error, please immediately return it to the sender at the above address and delete it from your computer.

Anglian Water Services Limited Registered Office: Anglian House, Ambury Road, Huntingdon, Cambridgeshire, PE29 3NZ Registered in England No 2366656

Please consider the environment before printing this email.

From: Sent: To: Subject: Attachments: Ian Philpott 24 October 2012 14:52 Suzanne Scobie FW: North west Cambridge - Design Flows for Foul Network for Agreement 121008 Foul Design Flows.pdf

Ian Philpott BEng (Hons) Engineer URS Infrastructure & Environment UK Limited

Scott House, Alencon Link, Basingstoke, Hampshire, RG21 7PP, United Kingdom

Direct: +44 (0)1256 310 617 Mobile: +44 (0)7767 230 143 ian.philpott@urs.com

From: Ian Philpott
Sent: 08 October 2012 15:35
To: Mike Dunn (mdunn2@anglianwater.co.uk)
Subject: North west Cambridge - Design Flows for Foul Network for Agreement

Mike

At our initial meeting I indicated that I would like to establish a schedule of the proposed building types for the development and agree foul flow rate which we would use for each of them. My concern being that as this development has a high proportion of 1 & 2 bed units the standard sewers for adoption 4000l/unit per day would result in pipe sizes and gradients such that self cleansing velocity is not achieved on a regular basis and thus blockages occur. In addition to this there is a proportion of non-domestic flows that also need to be considered. My aim is to ensure that everything is agreed with yourselves, as the adopting authority, prior to the design being submitted for approval so there are no surprises for either party.

Attached is a schedule I have developed based in the V9 masterplan schedule that I have previously provided you. Highlighted in orange are the flows I propose to use for each domestic house type and each non-domestic usage. Summarised below are a few key points for the development of the attached schedule

- All domestic properties will be CfSH Level 5.
- All non-domestic properties will be BREAM Excellent or BREAM Outstanding where viable
- Due to the high proportion of 1, 2 & 3 bed properties the SFA flows of 4000l/day/unit are considered excessive and giving rise to concerns about achieving self cleansing velocity at regular enough intervals to minimise blockages.
- In smaller 1,2 & 3 bed units a higher flow rate of 2001/head/day has been assumed
- In larger 4 & 5 bed units a lower flow rate of 150l/head per day, capped at 4000l/unit/day has been assumed.
- Academic and Commercial Research Final usages are unknown at this time. Therefore, a flow rate of 1.3I/s/Ha (SFA 7 B5.1.2) has been assumed
- Student Housing Flow rates as per studio flat have been assumed for each of the 2004 units to be provided.
- Other Uses
 - Storage area in Plot B12.1 No foul connection
 - University Accommodation Office (Plot B11a.2) and Police Office (Plot B14.2) considered to have low flows therefore only domestic component of 0.6l/s/Ha (SFA 7 B5.1.2a) assumed.
 - Senior Care Home (Plot B8), University Café (Plot B11a.1), Pub (Plot B12.1), Hotel (Plot B13) considered to have high flows therefore 1.6l/s/Ha (SFA 7 B5.1.2b) assumed

CHP (Plots B15.1 & D1) have very low flows under normal conditions, typically a staff toilet, shower and kitchenette). However, annual boiler inspections requires each of the boilers to be drained. Once the boiler selection is complete the volume of water from this activity can be assessed. Until this assessment can be made we have assumed 1.6l/s/Ha but we will confirm the actual figures as soon as these are available.

I would be grateful if you could confirm if these will be acceptable to Anglian Water. If there are any questions or you wish to discuss any of these points further then please give me a call.

Regards

lan

Ian Philpott BEng (Hons) Engineer URS Infrastructure & Environment UK Limited

Scott House, Alencon Link, Basingstoke, Hampshire, RG21 7PP, United Kingdom

Direct: +44 (0)1256 310 617 Fax: +44 (0)1256 310 201 Mobile: +44 (0)7767 230 143 <u>ian.philpott@urs.com</u> www.ursglobal.com

This e-mail and any attachments are confidential and may be proprietary or privileged. If you receive this message in error or are not the intended recipient, you should not retain, distribute, disclose or use any of this information and you should destroy the e-mail and any attachments or copies.

URS Infrastructure & Environment UK Limited Place of Registration: England & Wales Registered Number: 880328 Registered Office: Scott House, Alencon Link, Basingstoke, Hampshire, RG21 7PP, United Kingdom

Meeting Record

Contract:	North West Cambridge	Contract No:	47064388
Subject:	Foul Drainage Strategy	Date:	15/02/13
Place:	Anglian Water – Huntingdon		

Present:	Name	Company
IP	Ian Philpott	URS
MD	Mike Dunn	Anglian Water
GB	Gareth Barker	Anglian Water
DN	Derek Newman	Turner and Townsend
JN	Jon Neve	Turner and Townsend
Distribution:	As above plus	
SES	Suzanne Scobie	URS
RM	Rob Morris	Anglian Water
VT	Vyas Toteram	Turner and Townsend
нт	Heather Topel	AECOM D&P

ITEM	DESCRIPTION	ACTION
1.0	IP outlined the key changes within the foul drainage strategy which, AW should have received via CCC, compared to drawing 500-120 Rev c as issued with the Sec 98 Application	
	• Pumping Station 4 has been relocated to minimise pipe inverts at the pumping, previous location didn't have required clearance to buildings and would have resulted in incoming invert around 6m deep. Revised location invert 3-3.5m deep	
	Pumping Station 1 has been relocated away from buildings and at a lower elevation, again to minimise incoming invert depths	
	 Pumping Station 3 has been relocated at a lower elevation, again to minimise incoming invert depths. It should be noted that this pumping station isn't required until very late in the development programme. A decision on whether this is an adopted or private pumping station can be delayed until details of the development of plots D1 – D3 is decided. 	
2.0	IP re-iterated the reasoning why 4 pumping stations are required these are highlighted in the "Key Issues" box on drawing 500-120 Rev C. MD / GB agreed with the reasoning that 8-10m deep sewers would not be desirable.	
3.0	MD requested a copy of the FW strategy to ensure AW are working from the latest information. App F drawings will need to replace 500-120 in S98	IP

URS

Meeting Record

ITEM	DESCRIPTION	ACTION
4.0	DN outlined the key facts in the development timeline	
	Outline Planning Consent – Granted August 2011	
	 UoC Phase 1 Sign Off – January 2013 	
	 S106 Agreement Sign Off – Expect 22/02/13 	
	 Madingley Road and Huntingdon Road junction already have detailed consent and are progressing through technical approval. 	
5.0	MD outlined the S98 process	
	Timescale and costing expected by MD 15/02/13	
	 For this scale of development AW would be able to make a non-statutory offer as well as the 2 statutory offers. 	
	MD will forward once received	
6.0	DN/JN indicated that some minor changes have been made to number of units being developed. DN/JN to forward build schedule to AW	DN/JN
7.0	DN indicated that they would like to meeting AW again once the offers are on the table, bringing along Brian Nearney (UoC Commercial Manager) to discuss options	
8.0	IP advised that CCC would not release the condition within the planning application. Key points from CCC were information on wet well storage volumes which we were awaiting advice from AW on following there review of capacity in Madingley Road and pumping strategy. Any minor changes due to development numbers and wet well sizing etc could then be incorporated. MD / GB to progress release with CCC.	MD / GB
9.0	MD suggested a monthly conference call to make sure everything stay on track now development is moving forward. MD to schedule	MD
10.0	GB indicated that all works could be completed under the S98 whether it was done by UoC contractor or AW contractor. AW would need on-site costs, off-site cost to develop the cost model. DN / JN to get cost planning team to extract costs for on-site works.	DN/JN
	venered by les Dhilpett	

Minutes prepared by: Ian Philpott

Issued By: Ian Philpott Scott House Alencon Link Basingstoke Hampshire RG21 7PP

From: Sent: To: Cc: Subject: Derek.Newman@turntown.co.uk 09 April 2013 16:19 Topel, Heather David A Smith; Ian Philpott; Gavin Coull Fw: NW Cambridge Development Foul Water Strategy

Heather

Apologies unread mail - see below from Anglian Water.

Derek

Derek Newman Director

Turner & Townsend Project Management

t: +44 (0)20 7544 4000 | d: +44 (0)20 77598483 | d: +44 (0)7939674530

e: derek.newman@turntown.co.uk | http://www.turnerandtownsend.com

Turner & Townsend plc Registered Office: Low Hall, Calverley Lane, Horsforth, Leeds LS18 4GH, United Kingdom | Registered in England and Wales |Registration No. 6468643

----- Forwarded by Derek Newman/PM/Lon/TTGroup on 09/04/2013 16:16 -----

From: Dunn Michael <mDunn2@anglianwater.co.uk>

To: "Derek.Newman@turntown.co.uk'" <Derek.Newman@turntown.co.uk>, "Jon.Neve@turntown.co.uk'" <Jon.Neve@turntown.co.uk>

Date: 05/04/2013 15:28 Subject: RE: NW Cambridge Development Foul Water Strategy

Hi Derek, Jon

I will cover off the Section 98 offer and the communication with Cambridge CC in greater detail at our meeting next week.

All correspondence with the local authority is conducted through our growth planning team. The growth team have confirmed that we were sent details of the foul strategy for the site in October 2012.

We know that Outline planning approved by the <u>Joint Development Control Committee</u> on 8 August 2012, subject to the signing of a Section 106 Agreement. This was signed on 22 February 2013.

The proposal includes:

- up to 3,000 dwellings
- up to 2,000 student bedspaces
- 100,000 sq m employment floorspace, of which: up to 40,000 sq m commercial floorspace (class B1(b) and sui generis research uses) and at least 60,000 sq m academic floorspace (class D1)
- up to 5,300 sq m gross retail floorspace (use classes A1 to A5) (of which the supermarket is 2,000 sq m net floorspace)
- senior living, up to 6,500 sq m (class C2: residential institution, eg care home)
- community centre, police, primary healthcare, primary school, nurseries (Class D1)
- indoor sports provision and open space

The growth planning team responded to the council on 21 January 2013.

We have confirmed to the council that the high level drainage strategy of connecting the foul flows into the public foul sewer is acceptable. We also confirmed that the onsite strategy is currently ongoing.

We then added that following receipt of the surface water drainage strategy dated November 2012 that we would make the following comments

⁶ The surface water outfall will not be to a public surface water sewer and therefore it is outside of our jurisdiction to comment on available capacity. Should the on site surface water sewers be proposed for adoption, they should be designed in accordance with the current version of sewers for adoption.

We have invited the Council to contact us should they have any queries or additional points to raise and to date we have not been contacted since our correspondence on 21 January 2013.

Given the above, I am going to arrange a meeting with our growth team and the authority; even if it is to re-confirm our approach I think this would be beneficial.

Regards Mike Mike Dunn Developer Account Manager Developer Services Mob 07740 072186 E-Mail: mDunn2@anglianwater.co.uk Website: www.anglianwater.co.uk/developers

From: Derek.Newman@turntown.co.uk [mailto:Derek.Newman@turntown.co.uk]
Sent: 05 April 2013 13:22
To: Dunn Michael
Subject: RE: NW Cambridge Development Foul Water Strategy

EXTERNAL MAIL Mike

I have been told that this matter is unresolved and may have serious implications for follow on reserved matters applications.

Would you kindly chase for us?

Regards

Derek

Derek Newman Director **Turner & Townsend Project Management** t: +44 (0)20 7544 4000 | d: +44 (0)20 77598483 | d: +44 (0)7939674530 e: derek.newman@turntown.co.uk | http://www.turnerandtownsend.com

Turner & Townsend plc Registered Office: Low Hall, Calverley Lane, Horsforth, Leeds LS18 4GH, United Kingdom | Registered in England and Wales |Registration No. 6468643

From: Dunn Michael <mDunn2@anglianwater.co.uk>

To: "Derek.Newman@turntown.co.uk" <Derek.Newman@turntown.co.uk>

Cc: "ian.philpott@urs.com" <ian.philpott@urs.com>, "Jon.Neve@turntown.co.uk" <Jon.Neve@turntown.co.uk>

Date: 27/02/2013 10:27

Subject: RE: NW Cambridge Development

Hi Derek

I have chased our growth planning team for a response. As soon as I have that I will be in touch.

Regards

Mike

Mike Dunn Developer Account Manager Developer Services Mob 07740 072186 E-Mail: mDunn2@anglianwater.co.uk Website: www.anglianwater.co.uk/developers

From: Derek.Newman@turntown.co.uk [mailto:Derek.Newman@turntown.co.uk] Sent: 25 February 2013 17:14 To: Dunn Michael Cc: ian.philpott@urs.com; 'Jon.Neve@turntown.co.uk' Subject: Re: NW Cambridge Development

EXTERNAL MAIL Mike

Can you confirm that Anglian Water are satisfied with URS foul water site wide proposals?

Regards

Derek

Derek Newman Director **Turner & Townsend Project Management** t: +44 (0)20 7544 4000 | d: +44 (0)20 77598483 | d: +44 (0)7939674530

e: derek.newman@turntown.co.uk | http://www.turnerandtownsend.com

Turner & Townsend plc Registered Office: Low Hall, Calverley Lane, Horsforth, Leeds LS18 4GH, United Kingdom | Registered in England and Wales | Registration No. 6468643

From: Dunn Michael <mDunn2@anglianwater.co.uk>

To: "ian.philpott@urs.com" <ian.philpott@urs.com>, "Derek.Newman@turntown.co.uk" <Derek.Newman@turntown.co.uk>, "Jon.Neve@turntown.co.uk" <Jon.Neve@turntown.co.uk>

Date: 22/02/2013 14:20

Subject: NW Cambridge Development Hi all

Firstly apologies for the slight delay in responding with the capital scheme cost numbers following last weeks meeting.

Please be aware that the outline figures are given subject to further investigation. No warranty is given with regard to the reliability or accuracy of the amounts or the assumptions and conditions used in its preparation. These outline figures have been prepared in good faith using the assumptions and conditions we have been given, but actual costs may vary considerably from those set out. On request, as matters become more certain, we will aim to provide more accurate cost estimates for you, but these too may vary considerably from the amounts to be used as the basis for any contract.

Costs

A total scheme cost including the pumping station and the rising main of \pounds 3323k. This also includes risk consideration for highways and other utilities. The cost of the design is estimated at £194,000. The design costs will be included into the total scheme cost.

Timeframes

As mentioned last week we will need to take the scheme costs and timeframes through our internal gateway process.

Our gateway process works as follows

Gateway 1 – Submission of the Section 98 and high level processing by Anglian Water to generate a capital scheme cost and timeframe

Gateway 2 – We will begin detailed modelling and scoping of works including refining the scheme cost and optioneering other potential solutions to the development which could benefit cost and time.

Gateway 3 – We will take the scheme to our Capital Investment Group to release the Anglian Water financial contribution which allows us to commit to works.

At the moment we are estimating a time span of 46 weeks to get to gateway 3.

Next Steps

In the next week I will begin to work with the capital scheme costs that have been given and will take the cost through three costing options that will reveal your contribution to the capital scheme cost.

1. Relevant Deficit calculation – This option takes the cost of providing the infrastructure as the basis of a notional loan. Over 12 years we calculate the actual revenue we receive in respect of the infrastructure and this is offset against the cost of actual repayments. The deficit is paid annually by the Developer.

2. DADS – The calculation is the same principle as the Relevant Deficit except the deficit is paid as a single payment and the revenue is estimated from the build rate rather than the actual revenue

3. FCS – Fixed commuted sum. – This is our own non statutory offer that is unique to Anglian Water. Given the size and scale of the development, this is the preferred costing option. Over the next couple of weeks I will begin the process of putting the FCS together. It is likely I will be in touch to request various pieces of information.

I will also be sending out meeting requests next week to ensure that we have regular updates on the scheme and modelling process. I am happy to do this either by dial in or face to face meeting and I would suggest a minimum of one meeting per month at present. I will set the first meeting for a couple of week's time so that I can update you all on FCS, costs and progress through Gateway.

Regards

Mike

Mike Dunn Developer Account Manager Developer Services Mob 07740 072186 E-Mail: <u>mDunn2@anglianwater.co.uk</u> Website: www.anglianwater.co.uk/developers

*___*___

The information contained in this message is likely to be confidential and may be legally privileged. The dissemination, distribution, copying or disclosure of this message, or its contents, is strictly prohibited unless authorised by Anglian Water. It is intended only for the person named as addressee.

Anglian Water cannot accept any responsibility for the accuracy or

completeness of this message, and does not authorise any contract to be made using the Internet.

If you have received this message in error, please immediately return it to the sender at the above address and delete it from your computer.

Anglian Water Services Limited Registered Office: Anglian House, Ambury Road, Huntingdon, Cambridgeshire, PE29 3NZ Registered in England No 2366656

Please consider the environment before printing this email.

Turner & Townsend plc APM Awards - Overseas Project of the Year | 2011 Dublin Airport | 2010 King Shaka International Airport, Durban Risk Management Awards 2011 | Service Provider of the Year PMI | Distinguished Project Award 2010 | Nissan

For further information and registration details visit our website http://www.turnerandtownsend.com

This email is confidential and may also be privileged. The recipient is responsible for virus checking this email and any attachments. If you are not the intended recipient please immediately notify us and delete this email; you must not use, disclose, distribute, copy, print or rely on this email. Turner & Townsend does not accept any liability for any loss or damage from your receipt or use of this email.

Please consider the environment before printing this email.

Turner & Townsend plc APM Awards - Overseas Project of the Year | 2011 Dublin Airport | 2010 King Shaka International Airport, Durban Risk Management Awards 2011 | Service Provider of the Year PMI | Distinguished Project Award 2010 | Nissan For further information and registration details visit our website http://www.turnerandtownsend.com

This email is confidential and may also be privileged. The recipient is responsible for virus checking this email and any attachments. If you are not the intended recipient please immediately notify us and delete this email; you must not use, disclose, distribute, copy, print or rely on this email. Turner & Townsend does not accept any liability for any loss or damage from your receipt or use of this email.

Please consider the environment before printing this email.

Turner & Townsend plc APM Awards - Overseas Project of the Year | 2011 Dublin Airport | 2010 King Shaka International Airport, Durban Risk Management Awards 2011 | Service Provider of the Year PMI | Distinguished Project Award 2010 | Nissan

For further information and registration details visit our website http://www.turnerandtownsend.com

This email is confidential and may also be privileged. The recipient is responsible for virus checking this email and any attachments. If you are not the intended recipient please immediately notify us and delete this email; you must not use, disclose, distribute, copy, print or rely on this email. Turner & Townsend does not accept any liability for any loss or damage from your receipt or use of this email.

Please consider the environment before printing this email.